

Text2Mesh **Text-Driven Stylization for Meshes**

d

Oscar Richar Michel* Liu*

Sagie Rana Benai Hanock m а

* Equal Contribution

3D Object Editing

3D Object Editing: Unintuitive and Complicated

3D Object Editing: Lack of Data

ShapeNet (3D)	ImageNet (2D)	Dataset
220k	14M	Objects
3k	20k	Categories

Goal: Zero-Shot Intuitive Editing of 3D Objects Poncho Metal Scales Robot

Part Aware Global Semantics

Iron Man

Variety of Textures and Materials

IronColorfulManCrochet Candle

Structured Textures with Lighting

Brick Iron Colorful Man **Crochet Candle** Lamp

Out of Domain Generations

Input

Neural Style Field

Positional Encoding

• Frequency based encoding:

 $\gamma(p) = \left[\cos\left(2\pi\mathbf{B}p\right), \sin\left(2\pi\mathbf{B}p\right)\right]^{\mathrm{T}}$

randomly drawn from

 is a hyperparameter which controls the output frequency: 'Stained glass donught'

M. Tancik et al., "Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains". NeurIPS 2020.

Neural Style Field

Geometry and Color

'Alien made of bark'

Neural Rendering and Augmentations

How are views selected?

- Anchor view v: view with high similarity to target in CLIP space
- Many such views exist!
- Sample random views from a where
- 5 views are sufficient.
- Global and local set of augmentations

CLIP Based Semantic Loss

Full Method

Components Introduce Prior

'Candle made of bark'

Results

Results

Morphing

a camel made of brown crochet

Humans

"Lamp"

"Luxo lamp"

"Blue steel luxo lamp"

"Blue steel luxo lamp with corrugated metal"

Different Target Modality: Image Target

Different Target Modality: Target Mesh

Conclusion

- Intuitive user control using text.
- Zero Shot! No GAN or 3D dataset required.
- Arbitrarily high resolutions can be rendered.
- Disentanglement into an explicit mesh *content* and an *implicit* neural style field.
- Fine grained control both in terms of text and 3D shape.
- In-the-wild meshes, arbitrary styles. Out-of-domain stylizations.

Thank You Visit <u>https://threedle.github.io/text2mesh/</u> for more

What is CLIP?

A. Radford et al., "Learning Transferable Visual Models From Natural Language Supervision". ICML 2021.