

Semantic Manipulation of Visual Content

Sagie Benaim

Department of Computer Science, University of Copenhagen

About Me

• PhD at Tel Aviv University (04/2017 - 10/2021). Working with Prof. Lior Wolf.

Postdoc at DIKU and a member of the Pioneer Center of AI (11/2021 -).
Working with Prof. Serge Belongie.

Research Interests

- Unsupervised, semi-supervised and self-supervised learning.
- Few-shot learning and domain adaptation. Emphasis on low-resource generative models.

• Content creation and manipulation.

• Computer vision for AR/VR.

What is a natural image?

Intelligent machines must **understand** perceived content

Understanding by creating/manipulating: "What I cannot create, I do not understand" (Richard Feynman)

Texture Manipulation

Input Content

A.A.Efros, W.T.Freeman. "Image Quilting for Texture Synthesis and Transfer". SIGGRAPH01

Style Manipulation

L. A. Gatys, A. S. Ecker, and M. Bethge. "A neural algorithm of artistic style". 2015.

Semantic Manipulation

Target

Source Structure

Semantic Manipulation

Target

Source Structure

Semantic Manipulation

Architecture

Applications

Video games

CARLA

Movies

Advertising

Autonomous Driving Simulations

End-to-end Imitation Learning Speed x3 AR/VR

Augmented Reality

Amazon rolls out a new AR shopping feature for viewing multiple items at once

Sarah Perez @sarahintampa / 2:00 PM GMT+2 • August 25, 2020

Comment

image Credits: Amazon

Amazon is rolling out a new augmented reality shopping tool, Room Decorator, that will allow you to see furniture and other home décor in your own space. While the retailer had experimented with AR tools in the past, what makes Room Decorator different is that it's

Facebook gives a glimpse of metaverse, the planned virtual reality world – Guardian News

Mesh for Microsoft Teams aims to make collaboration in

Sundar Pichai thinks of the metaverse as more immersive computing with AR

Apple AR glasses are nearly ready for your eyes, says key investment group

By Gerald Lynch last updated 2 days ago Polishing up those specs

6000

(Image credit: Martin Hajek/idropnews)

Apple's AR glasses may be approaching their big reveal, according to the tech investment analysts at megabank Morgan Stanley.

Part I: Semantic Manipulation of Images

Multi-Image Approaches

Supervised (Paired) Setting

Unsupervised (Unpaired) Setting

Faces with glasses

Faces <u>without</u> glasses

Control Structure of Generated Faces (Transfer Glasses)

Source Glasses

Separate

Unsupervised Approaches

O. Press, T. Galanti, **S. Benaim,** L. Wolf. Emerging Disentanglement in Auto-Encoder Based Unsupervised Image Content Transfer. In **ICLR 2019.**

S Benaim M Khaitov T Galanti L Wolf Require a large collection of images from both domains

R. Mokady, **S. Benaim**, L. Wolf, A. Bermano. Mask Based Unsupervised Content Transfer. In **ICLR, 2020.**

Patch-Based Approaches

Multi-Image Distribution

Multi-Scale Patch Distribution

Karras et al., A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

Structural-analogy from a Single Image Pair

S. Benaim*, R. Mokady*, A. Bermano, D Cohen-Or, L. Wolf. CGF 2020.

Generate an image which is **aligned to the source** image but depicts **structure from a target image**

Target

Source

Output

Style Transfer Deep Image Analogy Style Style Content Content Result Result

Cannot Change Object Shape

Motivation B

Motivation B

Motivation B

Proposed Hierarchical Approach

Coarsest scale: Large Patches

 \overline{a}^{0} (Unconditional) \overline{ab}^{0} (Conditional) Finest scale: Small Patches

 $\frac{\bar{a}^{N}}{ab}$ (Unconditional) $\frac{\bar{a}^{N}}{ab}$ (Conditional)

LEVEL = N

LEVEL = 0

Unconditional Generation (Level 0)

Unconditional Generation (Level n)

Conditional Generation (Level n)

Conditional Generation (Level n)

Coarse and Mid Scales: Residual Training

Paint to Image

Video Generation

Part II: Semantic Manipulation of Videos

SpeedNet: Learning the Speediness in Videos

S. Benaim, A. Ephrat, O. Lang, I. Mosseri, W. T. Freeman, M. Rubinstein, M. Irani, T. Dekel. CVPR 2020.

Slower

Normal speed

Faster

https://speednet-cvpr20.github.io/

Automatically predict "speediness"

Uniform Speed Up (2x)

Adaptive speed up (2x)

Other Applications:

- Self-supervised action recognition
- Video retrieval

Training SpeedNet

Input video

Self-supervised training

Training SpeedNet

Spatial Max Pooling Temporal Average Pooling

Training SpeedNet: Artificial Cues

Spatial augmentations

١

• Temporal augmentations

• Same-batch training

Spatial Augmentations

- Random resize of input (both downsample and upsample)
- Network cannot rely on size dependent factors

Temporal Augmentations

- Normal speed sample rate: 1-1.2x
- Sped up sample rate: 1.7-2.2x
- Randomly skip frames with probability 1 1/f where f is randomly chosen randomly in the desired range.

Same Batch Training

Adaptive video speedup

Original 1x video

N videos of increasing speed

Speediness Curve

Original 1x video

N videos of increasing speed

1x video Speediness Curve 2x video Speediness Curve 3x video Speediness Curve ... Nx video Speediness Curve

Original 1x video Low Speediness (for most speedup curves) 1x video Speediness Curve 2x video Speediness Curve N videos of increasing speed **3x video Speediness Curve** ... Nx video Speediness Curve

. Original 1x video High Speediness (for most speedup curves) 1x video Speediness Curve 2x video Speediness Curve N videos of increasing speed **3x video Speediness Curve** Nx video Speediness Curve

Original 1x video Medium Speediness (only some curves indicate speedup) 1x video Speediness Curve 2x video Speediness Curve N videos of increasing speed **3x video Speediness Curve** ...

Nx video Speediness Curve

Original 1x video

1x binarized video Speediness Curvex12x binarized video Speediness Curvex23x binarized video Speediness Curvex3...

Nx binarized video Speediness Curve xN

Original 1x video

Final step: Estimate a smoothly varying speedup curve (say for 2x)

$\operatorname{arg\,min}_{S} E_{\operatorname{speed}}(S, V)$

• S should be close to V(t) – our estimated Speedup Vector

Final step: Estimate a smoothly varying speedup curve (say for 2x)

$$\operatorname{arg\,min}_{S} E_{\operatorname{speed}}(S, V) + \beta E_{\operatorname{rate}}(S, R_{o})$$

- S should be close to V(t) our estimated Speedup Vector
- The total frame rate should be the desired frame rate (e.g 2x or 3x)

Final step: Estimate a smoothly varying speedup curve

$$\arg \min_{S} E_{\text{speed}}(S, V) + \beta E_{\text{rate}}(S, R_o) + \alpha E_{\text{smooth}}(S')$$

- S should be close to V(t) our estimated Speedup Vector
- The total frame rate should be the desired frame rate (e.g 2x or 3x)
- Smoothness regularizer using the first derivatives S'

2x final "speediness curve" (blue):

Other self supervised tasks

Train SpeedNet

Self Supervised Action Recognition

Initialization		Supervised accuracy	
Method	Architecture	UCF101	HMDB51
Random init	S3D-G	73.8	46.4
ImageNet inflated	S3D-G	86.6	57.7
Kinetics supervised	S3D-G	96.8	74.5
CubicPuzzle [19]	3D-ResNet18	65.8	33.7
Order [40]	R(2+1)D	72.4	30.9
DPC [13]	3D-ResNet34	75.7	35.7
AoT [38]	T-CAM	79.4	-
SpeedNet (Ours)	S3D-G	81.1	48.8
Random init	I3D	47.9	29.6
SpeedNet (Ours)	I3D	66.7	43.7

Other self supervised tasks: Video Retrieval

Train SpeedNet

Query

"Memory Eleven": An artistic video by Bill Newsinger: <u>https://www.youtube.com/watch?v=djylS0Wi_lo</u>

Spatio-Temporal Visualizations

blue/green =
normal speed

yellow/orange =
slowed down

Part I: Semantic Manipulation of Images

Part II: Semantic Manipulation of Videos

Part III: Semantic Manipulation of **3D Objects**

Text2Mesh: Text-Driven Stylization for Meshes

O. Michel, R Bar-On, R Liu, S. Benaim, R. Hanocka. In Submission.

Part Aware Global Semantics

Structured Textures with Lighting

Variety of Textures and Materials

Out of Domain Generations

Overview: Input

Overview: Neural Style Field

Overview: Neural Rendering and Augmentations

Overview: CLIP Based Semantic Loss

Neural Style Field

Positional Encoding

• Frequency based encoding:

 $\gamma(p) = \left[\cos\left(2\pi\mathbf{B}p\right), \sin\left(2\pi\mathbf{B}p\right)\right]^{\mathrm{T}}$

 $\boldsymbol{B} \in \mathbb{R}^{n \times 3}$ randomly drawn from $N(0, \sigma)$

• σ is a hyperparameter which controls the output frequency:

M. Tancik et al., "Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains". NeurIPS 2020.

Neural Rendering and Augmentations

How are views selected?

- Anchor view v: view with high similarity to target in CLIP space
- Many such views exist!
- Sample random views from a $N(v, \sigma)$ where $\sigma = \pi/4$.
- 5 views are sufficient.

Augmentations are crucial!

- Global Augmentations:
 Random Perspective
- Local Augmentations: Random Perspective + Random Crop (10%)

CLIP Based Semantic Loss

What is CLIP?

A. Radford et al., "Learning Transferable Visual Models From Natural Language Supervision". ICML 2021.

CLIP Based Semantic Loss

- (y, y, z) (y, z) (
- Embed all augmented views and average to get S
- Embed text prompt to get T
- Maximize cosine similarity between S and T (Loss)

Important Advantages

- No GAN or 3D Dataset needed Only CLIP. And so, our method is zero-shot!
- Arbitrarily high resolutions can be rendered. Triangulation of the mesh can be arbitrarily dense.
- Disentanglement into an explicit mesh *content* and an *implicit* neural style field.
- In-the-wild meshes, arbitrary styles. Out-of-domain stylizations.

Humans

"Lamp"

"Luxo lamp"

"Blue steel luxo lamp"

"Blue steel luxo lamp with corrugated metal"

Increasing Mesh Granularity

"Cactus"

Different Target Modality

Image Target

Mesh Target

Aside: CLIP for Semantic Image Stylization

See "Image-Based CLIP-Guided Essence Transfer". H. Chefer, S. Benaim, R. Paiss, L. Wolf. In Submission.

Images

- Multi-sample approaches
- Structural analogies via patches of image pair

Videos

Speed up videos "gracefully" using
 "speed" as supervision

3D Objects

 Semantic stylization using text (CLIP-based)

Visual Understanding via Semantic Manipulation

Next?

- Manipulation of multiple 3D objects in complex scenes.
- Manipulation under "constraints" derived for AR devices.
- Functional relationships: A person riding a bike vs a person beside a bike

Images

- Multi-sample approaches
- Structural analogies via patches of image pair

Videos

• Speed up videos "gracefully" using "speed" as supervision

3D Objects

• Semantic stylization using text Thank You! Questions?

Visual Understanding via Semantic Manipulation

Next?

- Manipulation of multiple 3D objects in complex scenes.
- Manipulation under "constraints" derived for AR devices.
- Functional relationships: A person riding a bike vs a person beside a bike