On disentangled and few shot visual generation and understanding

Sagie Benaim

School of Computer Science, Tel Aviv University

Outline

- Part I: Disentangled representation and generation
 - Semi-supervised setting
 - Unsupervised setting
- Part II: Few shot generation
 - Image to Image translation
 - Video generation

What is a 'disentangled representation'?

- A real world **high-dimensional** observation x (image or video) can be represented by a **low-dimensional** latent variable z.
- z corresponds **to semantically meaningful factors** of variation of x such as: content, pose, style, etc.
- A change in a single factor of z should correspond to a change in a single underlying factor of variation of x.

What is a 'disentangled representation'?

disentanglement_lib

https://ai.googleblog.com/2019/04/evaluating-unsupervised-learning-of.html

Why do we need it?

Style Transfer¹

Content Transfer²

Shape Transfer⁴

Video Prediction⁵

1. Huang et al., 2. Benaim et al., 3. Ren et al., 4. Zhou et al., 5. Hsieh et al.,

Disentanglement: Supervision Level

- <u>Fully Supervised</u>: Each image in the dataset appears with or without each factor of variation.
- <u>Semi-Supervised (Set Level)</u>: Each set of images (which may be different), appear with or without each factor of variation.
- <u>Unsupervised</u>: Strong assumptions about data-set which are incorporated into the model design.

Disentanglement: Supervision Level

- <u>Fully Supervised</u>: Each image in the dataset appears with or without each factor of variation.
- <u>Semi-Supervised (Set Level)</u>: Each set of images (which may be different), appear with or without each factor of variation.
- <u>Unsupervised</u>: Strong assumptions about data-set which are incorporated into the model design.

Domain Intersection and Domain Difference

S. Benaim, M. Khaitov, T. Galanti, L. Wolf. ICCV 2019.

Given two visual domains, disentangle the **separate (domain specific)** information and **common (domain invariant)** information.

- If A is **persons with glasses** and B is **smiling persons**, our method produces three latent spaces:
- 1. "Common" latent space, $E_c(A) = E_c(B)$. The space of **common facial** features. For $c \in A \cup B$, $E_c(c)$ is the facial features of c.

If A is **persons with glasses** and B is **smiling persons**, our method produces three latent spaces:

- 1. "Common" latent space, $E_c(A) = E_c(B)$. The space of **common facial** features. For $c \in A \cup B$, $E_c(c)$ is the facial features of c.
- 2. "Separate" latent space for domain A, $E_A^s(A)$. The **space of glasses**. $E_A^s(a)$ is the **glasses of** a.

If A is **persons with glasses** and B is **smiling persons**, our method produces three latent spaces:

- 1. "Common" latent space, $E_c(A) = E_c(B)$. The space of **common facial** features. For $c \in A \cup B$, $E_c(c)$ is the facial features of c.
- 2. "Separate" latent space for domain A, $E_A^S(A)$. The **space of glasses**. $E_A^S(a)$ is the **glasses of** a.
- 3. "Separate" latent space for domain B, $E_B^s(B)$. The **space of smiles**. $E_B^s(b)$ is the **smile of** *b*.

Given this disentangled representation, we generate a visual sample $G(E_c(c), E_A^s(a), E_B^s(b))$, having the **facial features of c, glasses of a, smile of b.**

$G(E_c(b), E_A^s(a), 0)$ remove b's smile add a's glasses

Glasses

Smile

The "common" (or shared) Loss

Ensures E_c encodes information common to both domains

Encoder E_c attempts to match distributions of $E_c(A)$ and $E_c(B)$:

$$\frac{1}{m_1} \sum_{i=1}^{m_1} l(d(E^c(a_i)), 1) + \frac{1}{m_2} \sum_{j=1}^{m_2} l(d(E^c(b_j)), 1)$$

Discriminator d attempts to separate distributions:

$$\mathcal{L}_d := \frac{1}{m_1} \sum_{i=1}^{m_1} l(d(E^c(a_i)), 0) + \frac{1}{m_2} \sum_{j=1}^{m_2} l(d(E^c(b_j)), 1)$$

Reconstruction Losses

Ensures the "common" and "separate" encodings contain all the information in A

Legend:

Domain A

Domain B

$$\mathcal{L}_{recon}^{A} := \frac{1}{m_1} \sum_{i=1}^{m_1} \|G(E^c(a_i), E_A^s(a_i), 0) - a_i\|_1$$

Reconstruction Losses

Ensures the "common" and "separate" encodings contain all the information in A or B

$$\mathcal{L}_{recon}^{A} := \frac{1}{m_1} \sum_{i=1}^{m_1} \|G(E^c(a_i), E_A^s(a_i), 0) - a_i\|_1$$
$$\mathcal{L}_{recon}^{B} := \frac{1}{m_2} \sum_{j=1}^{m_2} \|G(E^c(b_i), 0, E_B^s(b_j)) - b_j\|_1$$

"Zero" Loss

Ensures the separate encoder of B does not encode information about A

$$\mathcal{L}_{zero}^{A} := \frac{1}{m_2} \sum_{j=1}^{m_2} \| E_A^s(b_j) \|_1$$

"Zero" Loss

Ensures the separate encoder of B (resp. A) does not encode information about A (resp. B)

$$\mathcal{L}_{zero}^{A} := \frac{1}{m_2} \sum_{j=1}^{m_2} \|E_A^s(b_j)\|_1$$
$$\mathcal{L}_{zero}^{B} := \frac{1}{m_1} \sum_{i=1}^{m_1} \|E_B^s(a_i)\|_1$$

Inference:

$G(E_c(b), E_A^s(a), 0)$ remove b's smile add a's glasses

Inference:

$G(E_c(b), E_A^s(a), 0)$ remove b's smile add a's glasses

$G(E_c(a), 0, E_A^s(b))$ remove a's glasses add b's smile

Interpolations

Interpolations

Separate A Latent Space (Smile)

Separate B Latent Space (Beard)

Losses "Necessary" and "Sufficient"

- Under mild assumptions (such as our losses being minimized):
 - $E^{c}(A)$ and $E^{s}_{A}(A)$ are independent (Similarly for B).
 - E^c(A) captures the information underlying e^c(A) (Similarly for B).
 - $E_{A}^{s}(A)$ holds the information underlying $e_{A}^{s}(A)$ (Similarly for B).
 - I.e. our losses are both **necessary and sufficient** for the desired **disentanglement**.

Masked Based Unsupervised Content Transfer

R. Mokady, S. Benaim, L. Wolf, A. Bermano. ICLR 2020.

- Only a local change in the target is needed
- Learn a mask and adapt only the area in the masked area

Attention-based Masked Generation

В

Two Attributes

Two Attributes

Smile to Glasses

Additional Content Transfer

Interpolation

Attribute Removal

Shile

Glasses

Table 6: Attribute removal for the task of Smile, Facial hair and Glasses.

Task	Method	KID	FID	Class.	Sim.
Smile	Ours	2.6 ± 0.4	120.0 ± 2.6	96.9%	0.96
	Press et al.	15.0 ± 0.6	167.7 ± 0.3	96.9%	0.81
	He et al.	4.1 ± 0.4	127.7 ± 4.5	96.9%	0.95
	Liu et al.	4.3 ± 0.3	129.0 ± 3	98.4%	0.92
	Fader	11.3 ± 0.7	155.6 ± 4.7	93.7 %	0.89
Mustache	Ours	1.9 ± 0.5	119.0 ± 0.8	95.3 %	0.95
	Press et al.	16.6 ± 0.8	175.9 ± 1.4	100.0%	0.80
	He et al.	4.6 ± 0.5	130.0 ± 3.0	87.5%	0.96
	Liu et al.	14.0 ± 0.6	160.0 ± 3.3	87.5%	0.85
	Fader	14.1 ± 0.6	162.6 ± 1.5	98.4 %	0.76
Glasses	Ours	5.2 ± 0.5	136.5 ± 2.6	99.2%	0.87
	Press et al.	15.3 ± 0.5	172.0 ± 4.7	100.0%	0.73
	He et al.	8.3 ± 0.9	141.4 ± 6.8	100.0%	0.84
	Liu et al.	6.8 ± 0.3	141.8 ± 4.8	98.4%	0.86
	Fader	$12.5{\pm}0.3$	$137.7{\pm}~4.2$	100.0%	0.76

Out of Domain Manipulation

(b)

Semi-Supervised Background-Foreground Segmentation Using Class Labels

Semi-Supervised Background-Foreground Segmentation Using Class Labels

Disentanglement: Supervision Level

- <u>Fully Supervised</u>: Each image in the dataset appears with or without each factor of variation.
- <u>Semi-Supervised (Set Level)</u>: Each set of images (which may be different), appear with or without each factor of variation.
- <u>Unsupervised</u>: Strong assumptions about data-set which are incorporated into the model design.

Unsupervised

"... **unsupervised** learning of disentangled representations is fundamentally **impossible without inductive biases** both on the considered **learning approaches** and the **data sets**."¹

1. "Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations". ICML 2019. Locatello et al.,

Content Style Disentanglement: StyleGAN

Content Style Disentanglement: StyleGAN

Instance Normalization

• Let a be a representation of images I_a

$$IN(a) = \left(\frac{a - \mu(a)}{\sigma(a)}\right)$$

- μ and σ are computed along the spatial dimension of a.
- $\mu(a)$ and $\sigma(a)$ represent the **global statistics** of an image (such as brightness, contrast, lightning and global color changes)

Disentangle content from global statistics

• Let a be a representation of images I_a

Global Statistics

Global Statistics

 $a = \sigma(a) \left(\frac{a - \mu(a)}{\sigma(a)}\right) + \mu(a)$

Content

- $\mu(a)$ and $\sigma(a)$ represent the **global statistics** of an image (such as brightness, contrast, lightning and global color changes)
- **Content** represents information relating to shape and texture of objects.
- This gives unsupervised disentanglement of content and global statistics!

AdaIN – Adaptive Instance Normalization

Global Statistics

• Let a, b be a representation of images I_a, I_b

Global Statistics

$$AdaIN(a,b) = \sigma(b) \left(\frac{a - \mu(a)}{\sigma(a)}\right) + \mu(b)$$

Content

• Replace the global statistics of *a* with that of *b*

Domain Adaptation

Supervised training on source domain and unsupervised on target domain

Source: GTAV

Unsupervised Domain Adaptation

Permuted AdalN: Reducing the Bias Towards Global Statistics in Image Classification

O. Nuriel, S. Benaim, L. Wolf. Submitted to CVPR 2021.

Permuted AdalN: Reducing the Bias Towards Global Statistics in Image Classification

O. Nuriel, S. Benaim, L. Wolf. Submitted to CVPR 2021.

Unsupervised Domain Adaptation

Unsupervised Domain Adaptation

GTVA to Cityscapes

AdaptSegNet [35]	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
SIBAN [28]	88.5	35.4	79.5	26.3	24.3	28.5	32.5	18.3	81.2	40.0	76.5	58.1	25.8	82.6	30.3	34.4	3.4	21.6	21.5	42.6
CLAN [29]	87.0	27.1	79.6	27.3	23.3	28.3	35.5	24.2	83.6	27.4	74.2	58.6	28.0	76.2	33.1	36.7	6.7	31.9	31.4	43.2
AdaptPatch [36]	92.3	51.9	82.1	29.2	25.1	24.5	33.8	33.0	82.4	32.8	82.2	58.6	27.2	84.3	33.4	46.3	2.2	29.5	32.3	46.5
ADVENT [38]	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
FADA [40]	92.5	47.5	85.1	37.6	32.8	33.4	33.8	18.4	85.3	37.7	83.5	63.2	39.7	87.5	32.9	47.8	1.6	34.9	39.5	49.2
FADA [40] + pAdaIN	93.3	55.7	85.6	38.3	29.6	31.2	34.2	17.8	86.2	41.0	88.8	65.1	37.1	87.6	45.9	55.1	15.1	39.4	31.1	51.5

Domain Adaptation

Swap global statistics with probability p

Image Classification

Image Classification

ImageNet

Method	Architecture	Top-1 Accuracy	Top-5 Accuracy
Baseline	ResNet50	77.1	93.63
pAdaIN	ResNet50	77.7	93.93
Baseline	ResNet101	78.13	93.71
pAdaIN	ResNet101	78.8	94.35
Baseline	ResNet152	78.31	94.06
pAdaIN	ResNet152	79.13	94.64

Cifar100

Method	Architecture	CIFAR 100	
Baseline	PyramidNet	83.49	
pAdaIN	PyramidNet	84.17	
Baseline	ResNet18	76.13	
pAdaIN	ResNet18	77.82	
Baseline	ResNet50	78.22	
pAdaIN	ResNet50	79.03	

Robustness Towards Corruption

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur Motion Blur Zoom Blur Snow Frost Fog Brightness Elastic Pixelate Contrast JPEG

ImageNet-C

Robustness Towards Corruption

CIFAR100-C

	Baseline	Cutout [8]	Mixup [43]	CutMix [43]	Auto- Augment [7]	Adversarial Training [30]	Augmix [<mark>18</mark>]	pAdaIN+ Augmix
DenseNet-BC	59.3	59.6	55.4	59.2	53.9	55.2	38.9	37.5
ResNext-29	53.4	54.6	51.4	54.1	51.3	54.4	34.4	31.6

Category Wise Breakdown

Dataset	Network	Architecture	E mCE Noise		e	Blur				Weather				Digital					
					Gauss	Shot 1	mpulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG
INet-C	Baseline	ResNet50	22.9	76.7	80	82	83	75	89	78	80	78	75	66	57	71	85	77	77
INet-C	pAdaIN	ResNet50	22.3	72.8	78	79	81	70	87	74	76	74	71	64	55	65	82	66	71
C100-C	Augmix [18]	DenseNet-BC	24.2	38.9	60	51	41	27	55	31	29	36	39	35	28	37	33	39	41
C100-C	Augmix+pAdaIN	DenseNet-BC	22.2	37.5	58	49	40	26	54	30	28	35	38	33	25	36	32	37	40
C100-C	Augmix [18]	ResNext-29	21.0	34.4	56	48	32	23	49	27	25	32	35	32	24	32	30	34	37
C100-C	Augmix+pAdaIN	ResNext-29	17.3	31.6	58	48	24	20	54	23	21	28	30	25	19	27	27	33	36

Part II: Few shot generation

Unconditional Few Shot Generation

SinGAN¹

StyleGAN2-ada²

SinGAN: Learning a Generative Model from a Single Natural Image. ICCV 2019. Shaham et al.,
Training Generative Adversarial Networks with Limited Data. NeurIPS 2020. Karras et al.,

Image to Image Translation

CycleGAN, Zhu et al., ICCV 2017

Typical Training Setting

One-Shot Unsupervised Cross Domain Translation

S. Benaim, L. Wolf. NeurIPS 2018.

Phase I: Auto-Encoder for Domain B

Phase II: Shared Latent Space Assumption

Phase II: Adapt Outer Layers

Cycle Loss

Phase II: Adapt Outer Layers

Reconstruction Loss

Phase II: Adapt Outer Layers

Adapt All Layers: Overfitting

No Underfitting (Common Space Assumption)

Segmentation to Facade

Facade to Segmentation

Aerial View to Maps

Maps to Aerial View

Summer to Winter

Winter to Summer

Structural-analogy from a Single Image Pair

S. Benaim*, R. Mokady*, A. Bermano, D Cohen-Or, L. Wolf. CGF 2020. (*Equal contribution)

Fig. 1. Our method takes two images as input (left and right), and generates images that consist of features from one image, spatially structured analogically to the other.

Structural Analogy

Target

Source

Output

Structural Analogy

Structural Analogy

Structural Analogy

Style Transfer

Deep Image Analogy

Cannot Change Object Shape

Structural Analogy

Motivation

Motivation

Motivation

Proposed Hierarchical Approach

Coarsest scale: Large Patches

 \overline{a}^{0} (Unconditional) \overline{ab}^{0} (Conditional) Finest scale: Small Patches

 $\frac{\bar{a}^{N}}{ab}$ (Unconditional) $\frac{\bar{a}^{N}}{ab}$ (Conditional)

LEVEL = N

LEVEL = 0

Unconditional Generation

Conditional Generation

Conditional Generation

Coarse and Mid Scales: Residual Training

Coarse and Mid Scales: Residual Training

Indirect Interaction Between Scales

Multiple Class Types

Input

Output

Paired Generation

Paint to Image

Text Transfer

Texture Transfer

Style Transfer

Content

Style

Ours

Video Generation

Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample

S. Gur*, S. Benaim*, L. Wolf. NeurIPS 2020 (*Equal contribution)

Real Generated Samples

13-Frames

13-Frames

Extending 2D to 3D

Real

Ours

Real

SinGAN [1] + 3D Convolution

Real

ConSinGAN [2] + 3D Convolution

[1] "SinGAN: Learning a Generative Model from a Single Natural Image", Shaham et al., ICCV 2019[2] "Improved Techniques for Training Single-Image GANs", Hinz et al., arXiv 2020

Input video - x^0

Reconstruction loss

Patch-VAE

Coarsest scale: Low resolution and frame rate

 x^{0} (Real) \bar{x}^{0} (Generated) Finest scale: High resolution and frame rate

 $\frac{x^{N}}{\bar{x}^{N}}$ (Real) \bar{x}^{N} (Generated)

LEVEL = 0

LEVEL = N

LEVEL = 0

Hierarchical up-sampling up to \bar{x}^M

 $LEVEL \leq M$

 x^{M+1}

Patch-GAN

 $\mathsf{LEVEL} = M + 1$

LEVEL = M + 1

Hierarchical up-sampling up to final resolution \bar{x}^N

 $M + 1 < \text{LEVEL} \le N$
Effect of Number of patch-VAE levels

Training Video

9 Levels Total

1 p-VAE – 8 p-GAN

Effect of Number of patch-VAE levels

Total of 9 layers

Conclusion (Disentanglement)

- Supervision level: supervised, semi-supervised and unsupervised.
- Semi-supervised generation -> good representation for downstream tasks.
- Unsupervised disentanglement of "global" statistics vs content using permuted AdaIN (applied on top of every convolutional layer) -> good for domain adaptation and many image classification tasks.
- Next: "semi-supervised" and "unsupervised" disentanglement for more complex tasks: e.g decompose illumination from a scene or decompose time-dependent from static factors in video.

Conclusion (Few shot generation)

- Image to Image Translation:
 - Weight sharing (shared latent space assumption)
 - Transformations (strong inductive bias)
 - Matching patches (dense similarity measure)
 - Next: Few shot image understanding: anomaly detection, retrieval?
- Video generation:
 - Patch VAE for coarse scales (large variety) and Patch GAN for fine scales (high fidelity)
 - Next: Temporal super resolution, temporal inpainting, etc

Papers (In order of appearance)

- S. Benaim, M. Khaitov, T. Galanti, L. Wolf. Domain Intersection and Domain Difference. In ICCV, 2019.
- R. Mokady, S. Benaim, L. Wolf, A. Bermano. Mask Based Unsupervised Content Transfer. In ICLR, 2020.
- O. Nuriel, **S. Benaim**, L. Wolf. Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image Classification. ArXiv, 2020 (In submission to CVPR 2021).
- S. Benaim, L. Wolf. One-Shot Unsupervised Cross Domain Translation. In NeurIPS, 2018.
- **S. Benaim***, R. Mokady*, A. Bermano, D. Cohen-Or, Lior Wolf. Structural-analogy from a Single Image Pair. In **Computer Graphics Forum**, **2020**.
- S. Gur*, S. Benaim*, Lior Wolf. Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample. In NeurIPS, 2020.

Thank You! Questions?

Unsupervised Domain Adaptation

Generalization

GTVA to Cityscapes

Method	Road	SW	Build	Wall	Fence	Pole	TL	TS	Veg.	Terrain	Sky	PR	Rider	Car	Truck	Bus	Train	Motor	Bike	mIoU
Source only	57.9	17.4	71.5	19.3	18.3	25.39	32.5	16.8	82.3	28.2	78.0	55.3	31.3	71.6	19.1	26.8	9.2	26.3	13.7	37.0
Source only + pAdaIN	57.2	20.2	71.6	28.3	19.1	26.1	33.6	13.0	82.1	29.0	69.5	56.7	33.0	67.5	27.8	35.1	17.6	33.7	14.5	38.7

Domain Adaptation

SVHN to MNIST

Selective Adaptation Adapt All Layers Selective Adaptation Adapt All Layers

Domain Adaptation

Domain B (Target)

Domain A (Source)

No Labels

With Labels

Unsupervised Domain Adaptation

Domain B (Target)

Domain A (Source)

No Labels

No Labels

Unsupervised Domain Adaptation

- Given an MNIST digit a, we randomly sample an SVHN digit b and consider the translation to SVHN as $G(E_c(a), 0, E_A^s(b))$.
- Marginalize over samples in b.
- Achieve **SOTA:** MNIST to SVHN: 61.0%, Reverse: 41.0%

Results

Beard to Smile

Glasses to Smile

Glasses N Smile

Interpolations

Fully supervised (example)

Learning to Factorize and Relight a City. Liu et al., ECCV 2020

Numerical Results: Pretrained Classifier

	Smile To Glasses	Glasses To Smile	Facial Hair To Smile	Smile To Facial Hair	Facial Hair To Glasses	Glasses To Facial Hair
Fader networks [15]	76.8%	97.3%	95.4%	84.2%	77.8 %	85.2%
Guided content transfer [20]	45.8%	92.7%	85.6%	85.1%	38.6%	82.2%
MUNIT [12]	7.3%	9.2%	9.3%	8.4%	7.3%	8.5%
DRIT [16]	8.5%	6.3%	6.3%	10.3%	8.6%	10.1%
Ours	91.8%	99.3%	93.7%	87.1%	93.1%	97.2%

Table 1. We pretrain a classifier to distinguish between samples in A (e.g. images of persons with glasses) and samples in B (e.g. images of persons with smile). We then sample $a \in A$, $b \in B$ from the test samples and check the membership of the generated image $G(E^{c}(b), E_{A}^{s}(a), 0))$ in A. Similarly, in the reverse direction, we check the membership of $G(E^{c}(a), 0, E_{B}^{s}(b))$ in B.

Numerical Results: User Study

- Q1: Is the specific attribute of A (e.g smile) removed?
- Q2: Is the guided image b specific attribute (e.g glasses) added?
- Q3: Is the identify of a's image preserved?

	Smile To	Glasses	Facial Hair	Smile To	Facial Hair	Glasses To
	Glasses	To Smile	To Smile	Facial Hair	To Glasses	Facial Hair
Question (1) ours	4.74 ± 0.13	4.30 ± 0.21	4.26 ± 0.20	4.30 ± 0.15	4.18 ± 0.17	4.50 ± 0.18
Question (2) ours	3.92 ± 0.16	4.45 ± 0.12	4.03 ± 0.15	3.34 ± 0.17	3.85 ± 0.20	3.95 ± 0.22
Question (3) ours	3.95 ± 0.23	3.20 ± 0.24	3.24 ± 0.25	3.22 ± 0.27	3.49 ± 0.22	3.39 ± 0.23
Question (1) for [20]	3.67 ± 0.17	4.16 ± 0.18	3.39 ± 0.19	3.34 ± 0.13	4.24 ± 0.12	3.15 ± 0.15
Question (2) for [20]	1.87 ± 0.35	4.42 ± 0.22	3.00 ± 0.32	2.67 ± 0.33	2.20 ± 0.42	3.30 ± 0.22
Question (3) for [20]	3.95 ± 0.15	2.93 ± 0.22	3.37 ± 0.25	3.40 ± 0.27	3.43 ± 0.28	3.75 ± 0.20

Table 2. Given 20 randomly selected images $a \in A$ and $b \in B$, we consider the generated image $G(E^c(a), 0, E_B^s(b)))$ and ask if (1) a's separate part is removed (2) b's separate part is added (3) a's common part is preserved (similarly in the reverse direction). Mean opinion scores in the range of 1 to 5 are reported, where higher is better.

Minimality

• Potentially Infinitely many solutions preserving distance correlations

Figure 1: An illustrative example where the two domains are line segments in \mathbb{R}^2 . There are infinitely many mappings that preserve the uniform distribution on the two segments. However, only two stand out as "semantic". These are exactly the two mappings that can be captured by a neural network with only two hidden neurons and Leaky ReLU activations, i.e., by a function $h(x) = \sigma_a(Wx + b)$, for a weight matrix W and the bias vector b.

Quantitative Results

Table 1: Ablation study for the MNIST to SVHN translation (and vice versa). We consider the contribution of various parts of our method on the accuracy. Translation is done for one sample.

Augment- ation	One-way cycle	Selective backprop	Accuracy (MNIST to SVHN)	Accuracy (SVHN to MNIST)
False	False	False	0.07	0.10
True	False	False	0.11	0.11
False	True	False	0.13	0.13
True	True	False	0.14	0.14
False	False	True	0.19	0.20
True	False	True	0.20	0.20
False	True	True	0.22	0.23
True	True	No Phase II update of E^S and G^S	0.16	0.15
True	Two-way cycle	True	0.20	0.13
True	Two-way cycle	False	0.11	0.12
True	True	True	0.23	0.23

Quantitative Results

Table 2: (i) Measuring the perceptual distance [29], between inputs and their corresponding output images of different style transfer tasks. Low perceptual loss indicates that much of the high-level content is preserved in the translation. (ii) Measuring the style difference between translated images and images from the target domain. We compute the average Gram matrix of translated images and images from the target domain and find the average distance between them, as described in [29].

Component	Dataset	OST	UNIT [7]	CycleGAN [2]	UNIT [7]	CycleGAN [2]	
	Samples in A	1	1	1	All	All	
(i) Content	Summer2Winter	0.64	3.20	3.53	1.41	0.41	
	Winter2Summer	0.73	3.10	3.48	1.38	0.40	
	Monet2Photo	3.75	6.82	5.80	1.46	1.41	
	Photo2Monet	1.47	2.92	2.98	2.01	1.46	
(ii) Style	Summer2Winter	1.64	6.51	1.62	1.69	1.69	
	Winter2Summer	1.58	6.80	1.31	1.69	1.66	
	Monet2Photo	1.20	6.83	0.90	1.21	1.18	
	Photo2Monet	1.95	7.53	1.91	2.12	1.88	

Quantitative Results

Table 3: (i) Perceptual distance [29] between the inputs and corresponding output images, for various drawing tasks. (ii) Style difference between translated images and images from the target domain. (iii) Correctness of translation as evaluated by a user study.

	Method	Images to Facades	Facades to Images	Images To Maps	Maps to Images	Labels to Cityscapes	Cityscapes to Labels
(i)	OST 1	4.76	5.05	2.49	2.36	3.34	2.39
	UNIT [7] All	3.85	4.80	2.42	2.30	2.61	2.18
	CycleGAN [2] All	3.79	4.49	2.49	2.11	2.73	2.28
(ii)	OST 1	3.57	7.88	2.24	1.50	0.67	1.13
	UNIT [7] All	3.92	7.42	2.56	1.59	0.69	1.21
	CycleGAN [2] All	3.81	7.03	2.33	1.30	0.77	1.22
(iii)	OST 1	91%	90%	83%	67%	66%	56%
	UNIT [7] ALL	86%	83%	81%	75%	63%	37%
	CycleGAN [2] ALL	93%	84%	97%	81%	72%	45%