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What is a ‘disentangled representation’?

• A real world high-dimensional observation x (image or video) can be 
represented by a low-dimensional latent variable z. 

• z corresponds to semantically meaningful factors of variation of x 
such as: content, pose, style, etc. 

• A change in a single factor of z should correspond to a change in a 
single underlying factor of variation of x. 



What is a ‘disentangled representation’?

https://ai.googleblog.com/2019/04/evaluating-unsupervised-learning-of.html



Why do we need it?
Content Transfer2

1. Huang et al., 2. Benaim et al., 3. Ren et al., 4. Zhou et al.,  5. Hsieh et al., 

Style Transfer1

Pose Transfer3 Shape Transfer4 Video Prediction5



Disentanglement: Supervision Level

• Fully Supervised: Each image in the dataset appears with or without 
each factor of variation. 

• Semi-Supervised (Set Level): Each set of images (which may be 
different), appear with or without each factor of variation. 

• Unsupervised: Strong assumptions about data-set which are 
incorporated into the model design.
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Given two visual domains, disentangle the 
separate (domain specific) information and 
common (domain invariant) information.

Domain Intersection and Domain Difference
S. Benaim, M. Khaitov, T. Galanti, L. Wolf. ICCV 2019.



If A is persons with glasses and B is smiling persons, our method produces three 
latent spaces:
1. "Common" latent space, 𝐸𝑐 𝐴 = 𝐸𝑐 𝐵 . The space of common facial 

features. For 𝑐 ∈ 𝐴 ∪ 𝐵, 𝐸𝑐 𝑐 is the facial features of c.
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the glasses of 𝒂.
3. "Separate" latent space for domain B, 𝐸𝐵

𝑠(𝐵). The space of smiles. 𝐸𝐵
𝑠 𝑏 is 

the smile of 𝒃.



Given this disentangled representation, we generate a visual sample 
𝐺(𝐸𝑐 𝑐 , 𝐸𝐴

𝑠(𝑎), 𝐸𝐵
𝑠(𝑏)), having the facial features of c, glasses of a, smile of b. 



Smile

𝐺(𝐸𝑐 𝑏 ,𝐸𝐴
𝑠(𝑎), 0)

remove b′s smile
add a′s glasses



The "common" (or shared) Loss

Discriminator 𝑑 attempts to 
separate distributions:

Encoder 𝐸𝑐 attempts to match 
distributions of 𝐸𝑐 𝐴 and 𝐸𝑐(𝐵):

Ensures 𝑬𝒄 encodes information common to both domains



Reconstruction Losses

Es
A(A)

Es
A(A)

Ensures the “common” and 
“separate” encodings contain all 
the information in A



Reconstruction Losses

Es
A(A)

Es
A(A)

Ensures the “common” and 
“separate” encodings contain all 
the information in A or B



"Zero" Loss

Ensures the separate encoder of B 
does not encode information 
about A

Es
A(A)



"Zero" Loss

Ensures the separate encoder of B 
(resp. A) does not encode 

information about A (resp. B)



Inference:

𝐺(𝐸𝑐 𝑏 ,𝐸𝐴
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Inference:

𝐺(𝐸𝑐 𝑏 ,𝐸𝐴
𝑠(𝑎), 0)

remove b′s smile
add a′s glasses

𝐺(𝐸𝑐 𝑎 , 0, 𝐸𝐴
𝑠(𝑏))

remove a′s glasses
add b′s smile



Interpolations
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Interpolations
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Losses “Necessary” and “Sufficient”

• Under mild assumptions (such as our losses being minimized):
• Ec(A) and Es

A(A) are independent (Similarly for B).

• Ec(A) captures the information underlying ec(A) (Similarly for B).

• Es
A(A) holds the information underlying es

A(A) (Similarly for B).

• I.e. our losses are both necessary and sufficient for the desired 
disentanglement.



Masked Based Unsupervised Content Transfer

• Only a local change in the target is 
needed

• Learn a mask and adapt only the 
area in the masked area

R. Mokady, S. Benaim, L. Wolf, A. Bermano. ICLR 2020.



Attention-based Masked Generation

A

B

A + B’s mustache



Two Attributes



Two Attributes Smile to Glasses



Additional Content Transfer



Interpolation



Attribute Removal



Out of Domain Manipulation



Semi-Supervised Background-Foreground 
Segmentation Using Class Labels

Input GT Ours Press et al., Ahn et al.,    CAM 



Semi-Supervised Background-Foreground 
Segmentation Using Class Labels



Disentanglement: Supervision Level

• Fully Supervised: Each image in the dataset appears with or without 
each factor of variation. 

• Semi-Supervised (Set Level): Each set of images (which may be 
different), appear with or without each factor of variation. 

• Unsupervised: Strong assumptions about data-set which are 
incorporated into the model design.



Unsupervised

“… unsupervised learning of disentangled representations is 
fundamentally impossible without inductive biases both on the 
considered learning approaches and the data sets.”1

1. “Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations”. ICML 2019. Locatello et al.,  



Content Style Disentanglement: StyleGAN
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Content Style Disentanglement: StyleGAN



Instance Normalization

• Let 𝑎 be a representation of images 𝐼𝑎

• 𝜇 and 𝜎 are computed along the spatial dimension of 𝑎.

• 𝜇 𝑎 and 𝜎 𝑎 represent the global statistics of an image (such as 
brightness, contrast, lightning and global color changes)



Disentangle content from global statistics

• Let 𝑎 be a representation of images 𝐼𝑎

• 𝜇 𝑎 and 𝜎 𝑎 represent the global statistics of an image (such as 
brightness, contrast, lightning and global color changes)

• Content represents information relating to shape and texture of objects.

• This gives unsupervised disentanglement of content and global statistics!

Content

Global Statistics Global Statistics



AdaIN – Adaptive Instance Normalization

• Let 𝑎, 𝑏 be a representation of images 𝐼𝑎 , 𝐼𝑏

• Replace the global statistics of 𝑎 with that of 𝑏
Content

Global Statistics Global Statistics



Domain Adaptation

Supervised training on source domain and unsupervised on target 
domain 

Source: GTAV Target: Cityscapes



Unsupervised Domain Adaptation

Fined Grained
Doman Discriminator



Permuted AdaIN: Reducing the Bias Towards 
Global Statistics in Image Classification
O. Nuriel, S. Benaim, L. Wolf. Submitted to CVPR 2021. 
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Unsupervised Domain Adaptation

Fined Grained
Doman Discriminator

Apply pAdaIN between 
all layers



Unsupervised Domain Adaptation

GTVA to Cityscapes
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Domain Adaptation

Swap global 
statistics with 
probability p



𝑥𝜋 1 , … , 𝑥𝜋 𝑛

…

𝑥1 ,… , 𝑥𝑛

𝑓𝜋 1 , … , 𝑓𝜋 𝑛

𝑓1 , … , 𝑓𝑛

Image Classification

Swap global 
statistics with 
probability p



Image Classification

ImageNet Cifar100



Robustness Towards Corruption



Robustness Towards Corruption
CIFAR100-C

Category Wise Breakdown



Part II: Few shot generation



Unconditional Few Shot Generation

SinGAN1

StyleGAN2-ada2

1. SinGAN: Learning a Generative Model from a Single Natural Image. ICCV 2019.  Shaham et al.,
2. Training Generative Adversarial Networks with Limited Data. NeurIPS 2020. Karras et al.,



Image to Image Translation

CycleGAN, Zhu et al., ICCV 2017



Typical Training Setting



56

One-Shot Unsupervised Cross Domain Translation
S. Benaim, L. Wolf. NeurIPS 2018.

Domain B:
Many unmatched samples

Domain A:
A single sample x

Analogue of 
x in B



Phase I: Auto-Encoder for Domain B

57

Encoder Decoder



Phase II: Shared Latent Space Assumption

58

Common CommonSeparate Separate



Phase II: Adapt Outer Layers

FreezeAdapt Freeze Adapt FreezeAdapt Freeze Adapt

G1: A -> B G2: B -> A

T

Cycle Loss



Phase II: Adapt Outer Layers

FreezeAdapt Freeze Adapt FreezeAdapt Freeze AdaptT

Reconstruction Loss

G1: A -> B G2: B -> A



Phase II: Adapt Outer Layers

FreezeAdapt Freeze Adapt FreezeAdapt Freeze AdaptT

Real\Fake Real\Fake

Adversarial PatchGAN Loss

G1: A -> B G2: B -> A

Patch Distribution of x 
and its augmentations



Adapt All Layers: Overfitting

Adapt Adapt Adapt AdaptT

G1: A -> B G2: B -> A



No Underfitting (Common Space Assumption)

FreezeAdapt Freeze Adapt FreezeAdapt Freeze AdaptT

G1: A -> B G2: B -> A
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Segmentation to Facade

OursInput Unit-ALLCycle-ALLCycle-1 Unit-1

One-Shot Many Samples



65

Facade to Segmentation

OursInput Unit-ALLCycle-ALLCycle-1 Unit-1

One-Shot Many Samples
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Aerial View to Maps

OursInput Unit-ALLCycle-ALLCycle-1 Unit-1

One-Shot Many Samples
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Maps to Aerial View

OursInput Unit-ALLCycle-ALLCycle-1 Unit-1

One-Shot Many Samples



68

Summer to Winter

OursInput Unit-ALLCycle-ALLCycle-1 Unit-1

One-Shot Many Samples



69

Winter to Summer

OursInput Unit-ALLCycle-ALLCycle-1 Unit-1

One-Shot Many Samples



Structural-analogy from a Single Image Pair

70

S. Benaim*, R. Mokady*, A. Bermano, D Cohen-Or, L. Wolf. CGF 2020. (*Equal contribution)



Structural Analogy
Source OutputTarget



Structural Analogy
Source OutputTarget



Structural Analogy
Source OutputTarget



Structural Analogy
Source OutputTarget



Style Transfer

ResultContentStyle

Deep Image Analogy

ResultContentStyle

Cannot Change Object Shape



Structural Analogy
A B

Analogy

StructureStructure



Motivation



Motivation



Motivation



Proposed Hierarchical Approach

LEVEL = 0 LEVEL = 𝑁

𝑎𝑏0(Conditional)

ത𝑎0(Unconditional)

Coarsest scale:
Large Patches

Finest scale:
Small Patches

𝑎𝑏𝑁(Conditional)

ത𝑎𝑁(Unconditional)



Unconditional Generation



Conditional Generation



Conditional Generation



Coarse and Mid Scales: Residual Training



Coarse and Mid Scales: Residual Training



Indirect Interaction Between Scales



Input Ours DIA SinGAN Cycle Style



Multiple Class Types
Input Output



Paired Generation

A B UnconditionalUnconditionalUnconditional Unconditional



Paint to Image

Input Sketch Ours Input Sketch Ours



Text Transfer

Content Style Ours



Texture Transfer

Content Texture Ours



Style Transfer

Content Style Ours



Video Generation



Real Generated Samples

13-Frames13-Frames

Hierarchical Patch VAE-GAN:
Generating Diverse Videos from a Single Sample
S. Gur*, S. Benaim*, L. Wolf. NeurIPS 2020 (*Equal contribution)



Extending 2D to 3D

SinGAN [1] + 3D Convolution

ConSinGAN [2] + 3D Convolution

[1] “SinGAN: Learning a Generative Model from a Single Natural Image”, Shaham et al., ICCV 2019
[2] “Improved Techniques for Training Single-Image GANs”, Hinz et al., arXiv 2020

OursReal

Real

Real



Proposed Approach: Patch VAE

Input video - 𝑥0



Proposed Approach: Patch VAE

Encoder – E 𝑥0



Proposed Approach: Patch VAE

KL Loss – 𝑧′

Each feature 𝑧𝑖 , 𝑖 = 1…𝐾 , 𝐾 = 𝑇 × 𝐻 ×𝑊,
in the latent space is associated with a patch 𝜔𝑖

𝑧0

𝑇
×
𝐻
×
𝑊

𝑧1

𝑧2

𝑧𝑖 Latent dim = 𝐶



Proposed Approach: Patch VAE

Decoder - ҧ𝑥0



Proposed Approach: Patch VAE

Reconstruction loss



Proposed Approach: Hierarchical Patch VAE

LEVEL = 0 LEVEL = 𝑁

ҧ𝑥0(Generated)

𝑥0 (Real)

Coarsest scale:
Low resolution
and frame rate

Finest scale:
High resolution
and frame rate

ҧ𝑥𝑁(Generated)

𝑥𝑁 (Real)



Proposed Approach: Hierarchical Patch VAE

LEVEL = 0



Proposed Approach: Hierarchical Patch VAE

Up-sampling block - ҧ𝑥1

LEVEL = 1



Hierarchical up-sampling up to ҧ𝑥𝑀

LEVEL ≤ 𝑀

Proposed Approach: Hierarchical Patch VAE



Up-sampling block ҧ𝑥𝑀+1

Proposed Approach: Hierarchical Patch VAE 
GAN

LEVEL = 𝑀 + 1



Adversarial training

Proposed Approach: Hierarchical Patch VAE 
GAN

Added noise 𝑧𝑀

LEVEL = 𝑀 + 1



Hierarchical up-sampling up to final resolution ҧ𝑥𝑁

Proposed Approach: Hierarchical Patch VAE 
GAN

𝑀 + 1 < LEVEL ≤ 𝑁



Effect of Number of patch-VAE levels

1 p-VAE – 8 p-GAN

9 Levels Total

8 p-VAE – 1 p-GAN

3 p-VAE – 6 p-GAN

Training Video



Effect of Number of patch-VAE levels

Quality

Total of 9 layers

Diversity
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Conclusion (Disentanglement)

● Supervision level: supervised, semi-supervised and unsupervised. 
● Semi-supervised generation -> good representation for downstream 

tasks. 
● Unsupervised disentanglement of “global” statistics vs content using 

permuted AdaIN (applied on top of every convolutional layer) -> good 
for domain adaptation and many image classification tasks. 

● Next: “semi-supervised” and “unsupervised” disentanglement for 
more complex tasks: e.g decompose illumination from a scene or 
decompose time-dependent from static factors in video. 

111



Conclusion (Few shot generation)

● Image to Image Translation: 

○ Weight sharing (shared latent space assumption)

○ Transformations (strong inductive bias)

○ Matching patches (dense similarity measure)

○ Next: Few shot image understanding: anomaly detection, retrieval?

● Video generation:

○ Patch VAE for coarse scales (large variety) and Patch GAN for fine scales (high fidelity) 

○ Next: Temporal super resolution, temporal inpainting, etc 112
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Thank You! Questions?

114



Unsupervised Domain Adaptation

GTVA to Cityscapes
Generalization

Domain Adaptation



SVHN to MNIST

116

Adapt All Layers

Selective Adaptation

Adapt All Layers

Selective Adaptation



Domain Adaptation

With LabelsNo Labels

Domain A (Source)Domain B (Target)



No Labels

Domain A (Source)Domain B (Target)

Unsupervised Domain Adaptation

No Labels



Unsupervised Domain Adaptation

• Given an MNIST digit a, we randomly sample an SVHN digit b and 
consider the translation to SVHN as 𝐺(𝐸𝑐 𝑎 , 0, 𝐸𝐴

𝑠(𝑏)).

• Marginalize over samples in b.

• Achieve SOTA: MNIST to SVHN: 61.0%, Reverse: 41.0%



Training:



Results

Beard to Smile Glasses to Smile Glasses Smile

U



Interpolations
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Fully supervised (example)

Learning to Factorize and Relight a City. Liu et al., ECCV 2020



Numerical Results: Pretrained Classifier



Numerical Results: User Study

• Q1: Is the specific attribute of A (e.g smile) removed? 

• Q2: Is the guided image b specific attribute (e.g glasses) added?

• Q3: Is the identify of a’s image preserved?



Minimality

• Potentially Infinitely many solutions preserving distance correlations

126



Quantitative Results
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Quantitative Results
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Quantitative Results
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