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Outline

e Part I: Disentangled representation and generation

e Semi-supervised setting
* Unsupervised setting

* Part Il: Few shot generation
* Image to Image translation
* Video generation



What is a ‘disentangled representation’?

* A real world high-dimensional observation x (image or video) can be
represented by a low-dimensional latent variable z.

e z corresponds to semantically meaningful factors of variation of x
such as: content, pose, style, etc.

* A change in a single factor of z should correspond to a change in a
single underlying factor of variation of x.



What is a ‘disentangled representation’?

disentanglement_lib

https://ai.googleblog.com/2019/04/evaluating-unsupervised-learning-of.html



Why do we need it?

Style Transfer! Content Transfer?
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1. Huanget al., 2. Benaimet al., 3. Renet al., 4. Zhou et al., 5. Hsieh et al.,



Disentanglement: Supervision Level

* Fully Supervised: Each image in the dataset appears with or without
each factor of variation.




Disentanglement: Supervision Level

* Semi-Supervised (Set Level): Each set of images (which may be
different), appear with or without each factor of variation.




Domain Intersection and Domain Difference

S. Benaim, M. Khaitov, T. Galanti, L. Wolf. ICCV 2019.

Given two visual domains, disentangle the
separate (domain specific) information and
common (domain invariant) information.



If A is persons with glasses and B is smiling persons, our method produces three

latent spaces:

1. "Common" latent space, E.(A) = E.(B). The space of common facial
features. For c € AU B, E.(c) is the facial features of c.
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If A is persons with glasses and B is smiling persons, our method produces three

latent spaces:

1. "Common" latent space, E.(A) = E.(B). The space of common facial
features. For c € AU B, E.(c) is the facial features of c.

2. "Separate" latent space for domain A, E; (A). The space of glasses. E;(a) is
the glasses of a.

3. "Separate" latent space for domain B, Ez (B). The space of smiles. EZ(b) is
the smile of b.




Given this disentangled representation, we generate a visual sample
G(E.(c),E;(a), E5(b)), having the facial features of c, glasses of a, smile of b.




G(E.(b),E5(a), 0)
remove b’s smile
add a’s glasses

Glasses




Legend:

The "common" (or shared) Loss

Domain B

Shared encoder

Ensures E_. encodes information common to both domains

Generator

Loss

Encoder E_. attempts to match
distributions of E, (A) and E.(B):

M9

— Zi(d(E (@i)), 1) + — Zi(d(E (05)),1)

Discriminator d attempts to
separate distributions:

Lai= -0 UA(E (@), 0) + == D Ud(E (b)), 1

Laav (Ec(a) E“(b))




Reconstruction Losses

R e

Ensures the “common” and E :

“separate” encodings contain all ’
the information in A A
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Legend:

Domain A

Domain B
Shared encoder
Generator

Loss




Reconstruction Losses

[N Lrecon(a'G(Ec(a)'EsA(a)’ﬁ)) I |

Ensures the “common” and
“separate” encodings contain all
the information in Aor B

Legend:

Domain A

Domain B
Shared encoder
Generator

Loss




Legend:
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"Zero" Loss

Ensures the separate encoder of B
(resp. A) does not encode

information about A (resp. B)
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Inference:

G(E.(b),E;(a),0)
remove b’s smile
add a’s glasses

Legend:

- Domain A
- Domain B

- Shared encoder
- Generator

Loss




- .DomainA
. - Domain B
| n fe re n Ce ’ - Shared encoder
- Generator
G(E.(b),E;(a), 0) G(E:(a),0,E; (D))
remove b’s smile remove a’s glasses

add a’s glasses add b’s smile




Interpolations

Common Latent Space (Facial Features)

Separate A Latent Space (Smile)




Interpolations

Separate B Latent Space (Beard)

Separate A Latent Space (Smile)




Losses “Necessary” and “Sufficient”

 Under mild assumptions (such as our losses being minimized):

E¢(A) and E®,(A) are independent (Similarly for B).
ES(A) captures the information underlying e¢(A) (Similarly for B).
Es,(A) holds the information underlying es,(A) (Similarly for B).

l.e. our losses are both necessary and sufficient for the desired
disentanglement.



Masked Based Unsupervised Content Transfer
R. Mokady, S. Benaim, L. Wolf, A. Bermano. ICLR 2020.

* Only a local change in the target is
needed

* Learn a mask and adapt only the
area in the masked area




Attention-based Masked Generation

A + B’s mustache




Two Attributes




Two Attributes Smile to Glasses




Additional Content Transfer
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Interpolation




Facial Hair

Smile

Attribute Removal

Glasses

Table 6: Attribute removal for the task of Smile, Facial hair and Glasses.

Task Method KID FID Class.  Sim.
Smile Ours 26+04 1200+£26 969% 096
Pressetal. 15.0+06 167.7+£03 969% 0.1
He et al. 41+04 127.7 L+ 4.5 96.9%  0.95
Liu et al. 43403 129.0 £ 3 98.4% 0.92
Fader 11.34+£0.7 1556+47 93.7% 0.89
Mustache Ours 19+05 1190+08 953% 095
Pressetal. 166408 1759+14 100.0% 0.80
He et al. 46+05 130030 87.5% 0.96
Liu et al. 140+£06 160.0+33 875% 085
Fader 141+06 1626+15 984% 0.76
Glasses Ours 5.2+ 0.5 136.5+£26 992% 0.87
Pressetal. 153405 172.0+4.7 100.0% 0.73
He et al. 8.3+09 141.4+6.8 100.0% 0.84
Liu et al. 6.8 +03 141.8+48 984% 0.86
Fader 125403 1377+4.2 100.0% 0.76




Out of Domain Manipulation




Semi-Supervised Background-Foreground
Segmentation Using Class Labels

Input Ours | Press et al.,,Ahnetal., CAM
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Semi-Supervised Background-Foreground
Segmentation Using Class Labels




Disentanglement: Supervision Level

e Unsupervised: Strong assumptions about data-set which are
incorporated into the model design.




Unsupervised

“... unsupervised learning of disentangled representations is
fundamentally impossible without inductive biases both on the
considered learning approaches and the data sets.”!

1. “Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations”. ICML 2019. Locatelloet al.,



Content Style Disentanglement: StyleGAN
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Content Style Disentanglement: StyleGAN

| Const 4x4x512 |




Instance Normalization

* Let a be a representation of images I,

o(a)

* u and o are computed along the spatial dimension of a.

IN(@) = <a = u(a))

* u(a) and o(a) represent the global statistics of an image (such as
brightness, contrast, lightning and global color changes)



Disentangle content from global statistics

* Let a be a representation of images I,

Global Statistics Global Statistics
rofa —p@Y 0
oo () o

\ )
|

Content
* u(a) and o(a) represent the global statistics of an image (such as
brightness, contrast, lightning and global color changes)

e Content represents information relating to shape and texture of objects.
* This gives unsupervised disentanglement of content and global statistics!



AdalN — Adaptive Instance Normalization

* Let a, b be a representation of images I, I,

Global Statistics Global Statistics
—fa —u(@)\
AdalN(a,b) = o(b) ( - (‘; § )> + u(b)

\ )
|

Content

* Replace the global statistics of a with that of b




Domain Adaptation

Supervised training on source domain and unsupervised on target
domain

Source: GTAV Target: Cityscapes




Unsupervised Domain Adaptation

Feature Extractor Classifier
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Permuted AdalN: Reducing the Bias Towards
Global Statistics in Image Classification

O. Nuriel, S. Benaim, L. Wolf. Submittedto CVPR 2021.

X1, %n LS

Swap global
statistics with
probability p




Permuted AdalN: Reducing the Bias Towards
Global Statistics in Image Classification

O. Nuriel, S. Benaim, L. Wolf. Submittedto CVPR 2021.

-----

Apply AdalN with
probability p




Unsupervised Domain Adaptation

Feature Extractor Classifier
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Unsupervised Domain Adaptation

GTVA to Cityscapes
[ AdaptSegNet [25] | 86.5 360 799 234 233 239 352 148 834 333 756 585 27.6 737 325 354 39 301 281 | 424 |
SIBAN [28] 88.5 354 795 263 243 285 325 183 812 400 765 581 258 826 303 344 34 216 215 | 426
CLAN [29] 870 271 796 273 233 283 355 242 836 274 742 586 280 762 331 367 67 319 314 | 432
AdaptPatch [36] 923 519 821 292 251 245 338 330 824 328 822 586 272 843 334 463 22 295 323 | 465
ADVENT [34] 89.4 331 810 266 268 272 335 247 839 367 788 587 305 848 385 445 17 316 324 | 455
FADA [40] 925 475 851 376 328 334 338 184 853 377 835 632 397 875 329 478 1.6 349 395 | 492
FADA [40] + pAdaIN | 933 557 856 383 296 312 342 178 862 410 888 651 371 876 459 551 151 394 311 | 515




Domain Adaptation

}
X5, X LT
Swap global
statistics with
probability p
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X 1 X n ft1, ftn




Image Classification

}
X1, s Xp fir e Jn
Swap global
statistics with
probability p
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Image Classification

ImageNet
Method  Architecture Top-1 Top-5
Accuracy Accuracy
Baseline  ResNet50 77.1 93.63
pAdaIN ResNet50 71.7 93.93
Baseline  ResNet101 78.13 93.71
pAdaIN  ResNetl01 78.8 94.35
Baseline = ResNet152 78.31 94.06
pAdaIN  ResNetl52 79.13 94.64

Cifar100
Method  Architecture CIFAR 100
Baseline PyramidNet 83.49
pAdaIN  PyramidNet 84.17
Baseline ResNet18 76.13
pAdalN ResNet18 77.82
Baseline ResNet50 78.22
pAdaIN ResNet50 79.03




Robustness Towards Corruption

ImageNet-C

Gaussian Noise  Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

Motion Blur Zoom Blur Snow Frost Fog
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Robustness Towards Corruption

CIFAR100-C
Baseline Cutout Mixup CutMix Auto- Adversarial Augmix pAdalN+
[£] [43] [43] Augment [/] Training [30] [18] Augmix
DenseNet-BC 59.3 59.6 55.4 59.2 53.9 55.2 38.9 37.5
ResNext-29 534 54.6 514 54.1 51.3 54.4 344 31.6

Category Wise Breakdown

Dataset Network Architecture E mCE Noise Blur Weather Digital

Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
INet-C Baseline ResNet50 229767 80 82 83 75 89 78 80 78 75 66 57 71 8 77 77
INet-C pAdalN ResNet50 223728 78 79 81 70 87 74 76 74 71 64 55 65 82 66 71

C100-C Augmix [1£] DenseNet-BC 24.2 389 60 51 41 27 55 31 29 36 39 35 28 37 33 39 41
C100-C Augmix+pAdalN DenseNet-BC 22.2 37.5 58 49 40 26 54 30 28 35 3833 25 36 32 37 40

C100-C Augmix [15] ResNext-29 21.0 344 56 32 23 49 27 25 32 3532 24 32 30 34 37
C100-C Augmix+pAdalN ResNext-29 17.3 31.6 58 24 20 54 23 21 28 3025 19 27 27 33 36

48
48




Part II: Few shot generation



Unconditional Few Shot Generation

SinGAN!

StyleGAN2-ada?

Single training image Random samples from a single image
eSS o — ST oo e S e — oy

s —
—— — — s =

Latfnts Reals Latfnts
G p G
=5

Aug Aug Aug
1 1 1
D D

GO OO G
CG loss) ( D loss )

1. SinGAN: Learning a Generative Model from a Single NaturalImage. ICCV 2019. Shahametal.,
2. Training Generative Adversarial Networks with Limited Data. NeurlPS 2020. Karras et al.,



Image to Image Translation

Monet 7_ Photos Zebras % Horses

Summer Z_ Winter

horse —» zebra

...............................................................................................................................................................................................................
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Cezanne

Photograph Monet Van Gogh

CycleGAN, Zhu et al., ICCV 2017



Typical Training Setting

Paired | Unpaired

o0 0 0



One-Shot Unsupervised Cross Domain Translation
S. Benaim, L. Wolf. NeurlPS 2018.

Domain B: Domain A: Analogue of
Many unmatched samples A single sample x Xin B

56



Phase |: Auto-Encoder for Domain B
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Phase Il: Shared Latent Space Assumption
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Phase Il: Adapt Outer Layers

G:A->B G,.B->A

Cycle Loss




Phase Il: Adapt Outer Layers

G,:A->B G,.B->A

Reconstruction Loss



Phase Il: Adapt Outer Layers

Patch Distribution of x
and its augmentatlons

Adversarial PatchGAN Loss

ReaI\Fa ke Real\Fake



Adapt All Layers: Overfitting

G:A->B G,.B->A




No Underfitting (Common Space Assumption)

G:A->B G,.B->A




Segmentation to Facade

One-Shot

Many Samples

Input I Ours

Unit-1 ! Icycle-ALL  Unit-ALL !
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Facade to Segmentation

One-Shot

Many Samples

CycIe 1

Ours
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Aerial View to Maps

One-Shot
|

Many Samples

Input I Ours Cycle-1

Unit-1 ! Icycle-ALL  Unit-ALL !
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Maps to Aerial View

One-Shot

Many Samples

Input I Ours Cyclel

Unit-1 ! Icycle-ALL
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Summer to Winter

One-Shot
|

Many Samples

Cycle-1

Input I Ours

Unit-1 ! fcycle-ALL

Unit-ALL |
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Winter to Summer

One-Shot
|

Many Samples

Cycle-1

Unit-1 ! Icycle-ALL  Unit-ALL !
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Structural-analogy from a Single Image Pair
S. Benaim*, R. Mokady*, A. Bermano, D Cohen-Or, L. Wolf. CGF 2020. (*Equal contribution)

analogy g structure

Fig. 1. Our method takes two images as input (left and right), and generates images
that consist of features from one image, spatially structured analogically to the other.

70



Structural Analogy

Target Source




Structural Analogy

Target | Output




Structural Analogy

Target Source




Structural Analogy

Target Source




Style Transfer Deep Image Analogy

Content

Style Content Result

Cannot Change Object Shape



Structural Analogy

Analogy

Structure Structure




Motivation




Motivation




Motivation




Proposed Hierarchical Approach

Coarsest scale: Finest scale:
Large Patches Small Patches
a’(Unconditional) a"’ (Unconditional)
ab’(Conditional) ab” (Conditional)

LEVEL =0 LEVEL =N



Unconditional Generation

?to n+1
]

Unconditional

b




Conditional Generation

Conditional
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-]



Conditional Generation

Real/Fake

Lade

Conditional




Coarse and Mid Scales: Residual Training

?to n+1
Zn L




Coarse and Mid Scales: Residual Training

Conditional

o

QY
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Indirect Interaction Between Scales

ton+1
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Multiple Class Types

Input Output

\ & S {




Paired Generation

A Ynconditional B Ynconditional

Q,',’-':‘




Paint to Image

Sketch Ours Input Sketch Ours




Text Transfer

Ours

Style

Content




Texture Transfer

Texture




Style Transfer

Content Style Ours




Video Generation




Hierarchical Patch VAE-GAN:
Generating Diverse Videos from a Single Sample
S. Gur*, S. Benaim®, L. Wolf. NeurlIPS 2020 (*Equal contribution)

Generated Samples

13-Frames



Extending 2D to 3D

Real Ours

[1] “SInGAN: Learning a Generative Model from a Single Natural Image”, Shaham et al., ICCV 2019
[2] “iImproved Techniques for Training Single-Image GANs”, Hinz et al., arXiv 2020



Proposed Approach: Patch VAE

Input video - x°

g -
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aiof You

Patch-VAE




Proposed Approach: Patch VAE

Encoder—E(x?)
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Patch-VAE




Proposed Approach: Patch VAE

KL Loss — z'
____._._.,/*EKL {{fU
U§IJ %MN 0, 1) S L Recon
| 2]

Each featurez; ,i=[1..K|,K =T xXHXW,
in the latent space is associated with a patch w;

“—» Latentdim=C




Proposed Approach: Patch VAE

Decoder - iV
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Proposed Approach: Patch VAE

Patch-VAE

Reconstruction loss
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Proposed Approach: Hierarchical Patch VAE

Coarsest scale: Finest scale:
Low resolution High resolution
and frame rate and frame rate
x" (Real) x" (Real)
x"(Generated) " (Generated)

LEVEL =0 LEVEL =N



Proposed Approach: Hierarchical Patch VAE

Patch-VAE

LEVEL =0



Patch-VAE

Proposed Approach: Hierarchical Patch VAE

Up-sampling block - x1
LKL 4 a)
,—-"'/)' A

ﬁRecon

e En

LEVEL =1



Patch-VAE

Proposed Approach: Hierarchical Patch VAE

Hierarchical up-sampling up to x™

LEVEL < M



Patch-GAN

Proposed Approach: Hierarchical Patch VAE
GAN

Up-sampling block x™*1

|
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LEVEL=M + 1



Patch-GAN

Proposed Approach: Hierarchical Patch VAE

GAN
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Adversarial training
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Patch-GAN

Proposed Approach: Hierarchical Patch VAE
GAN

Hierarchical up-sampling up to final resolution x
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Effect of Number of patch-VAE levels

9 Levels Total

1 p-VAE - 8 p-GAN

8 p-VAE -1 p-GAN el :

3 p-VAE — 6 p-GAN




(Lower is Better)

Effect of Number of patch-VAE levels
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Conclusion (Disentanglement)

e Supervision level: supervised, semi-supervised and unsupervised.

o Semi-supervised generation -> good representation for downstream
tasks.

o Unsupervised disentanglement of “global” statistics vs content using
permuted AdalN (applied on top of every convolutional layer) -> good
for domain adaptation and many image classification tasks.

e Next: “semi-supervised” and “unsupervised” disentanglement for
more complex tasks: e.g decompose illumination from a scene or
decompose time-dependent from static factors in video.



Conclusion (Few shot generation)

e Image to Image Translation:
o Weight sharing (shared latent space assumption)
o Transformations (strong inductive bias)
o Matching patches (dense similarity measure)

o Next: Few shot image understanding: anomaly detection, retrieval?

o Video generation:

o Patch VAE for coarse scales (large variety) and Patch GAN for fine scales (high fidelity)

o Next: Temporal super resolution, temporal inpainting, etc



Papers (In order of appearance)

S. Benaim, M. Khaitov, T. Galanti, L. Wolf. Domain Intersection and Domain Difference. In
ICCV, 20109.

R. Mokady, S. Benaim, L. Wolf, A. Bermano. Mask Based Unsupervised Content Transfer. In
ICLR, 2020.

O. Nuriel, S. Benaim, L. Wolf. Permuted AdalN: Reducing the Bias Towards Global Statistics
in Image Classification. ArXiv, 2020 (In submission to CVPR 2021).

S. Benaim, L. Wolf. One-Shot Unsupervised Cross Domain Translation. In NeurlPS, 2018.

S. Benaim*, R. Mokady*, A. Bermano, D. Cohen-Or, Lior Wolf. Structural-analogy from a
Single Image Pair. In Computer Graphics Forum, 2020.

S. Gur*, S. Benaim?*, Lior Wolf. Hierarchical Patch VAE-GAN: Generating Diverse Videos from
a Single Sample. In NeurlPS, 2020.



Thank You! Questions?



Unsupervised Domain Adaptation

. GTVA to Cityscapes
Generalization
Method |Ruad SW  Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike | mloU
Source only 579 174 715 193 183 2539 325 168 823 282 780 553 313 716 191 268 92 263 137 | 370

Source only + pAdalN | 57.2 202 716 283 191 261 336 130 821 290 695 567 330 675 278 351 176 337 145 | 387

Domain Adaptation




SVHN to MINIST

Selective Adaptation §§ | nnnnnnn
e 1 A REAEN
Selective Adaptation - " ﬂnﬂﬂuﬂ
s - EIIEINAAEIIGIES




Domain Adaptation

Domain B (Target) Domain A (Source)

No Labels With Labels



Unsupervised Domain Adaptation

Domain B (Target) Domain A (Source)

No Labels No Labels



Unsupervised Domain Adaptation

* Given an MNIST digit a, we randomly sample an SVHN digit b and
consider the translation to SVHN as G(E.(a), 0, Ex (b)).

* Marginalize over samples in b.
e Achieve SOTA: MNIST to SVHN: 61.0%, Reverse: 41.0%



Training:
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Results

N Smile

Glasses

Glasses to Smile

Beard to Smile
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Interpolations

Common Latent Space (Facial Features)

Separate B Latent Space (Beard)




Fully supervised (example)

Training Stack

- —

Alignment
Warping
. E B
v
Reflectance =
---------- lmage -
Shading

A
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lllumination Descriptor
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Scene Descriptor

Geometry Representation

Average Reflectance

Shading Images Reconstruction
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Time-Varying Factors

Permanent Factors

- Factorization Step

ol

""" Alignment Step

Learning to Factorize and Relight a City. Liu et al., ECCV 2020



Numerical Results: Pretrained Classifier

Smile To Glasses Facial Hair Smile To Facial Hair  Glasses To
Glasses To Smile To Smile Facial Hair To Glasses  Facial Hair

Fader networks [ 5] 76.8% 97.3% 95.4% 84.2% 77.8 % 85.2%
Guided content transfer [20] 45.8% 92.7% 85.6% 85.1% 38.6% 82.2%
MUNIT [12] 7.3% 9.2% 9.3% 8.4% 7.3% 8.5%
DRIT [16] 8.5% 6.3% 6.3% 10.3% 8.6% 10.1%
Ours 91.8% 99.3% 93.7% 87.1% 93.1% 97.2%

Table 1. We pretrain a classifier to distinguish between samples in A (e.g. images of persons with glasses) and samples in B (e.g.
images of persons with smile). We then sample @ € A, b € B from the test samples and check the membership of the generated image

G(E(b), E%(a),0)) in A. Similarly, in the reverse direction, we check the membership of G(E(a), 0, E%(b)) in B.



Numerical Results: User Study

* Q1: Is the specific attribute of A (e.g smile) removed?
* Q2: Is the guided image b specific attribute (e.g glasses) added?

* Q3: Is the identify of a’s image preserved?

Smile To Glasses Facial Hair Smile To Facial Hair  Glasses To

Glasses To Smile To Smile Facial Hair  To Glasses Facial Hair
Question (1) ours 474 +0.13 430 +0.21 4.26+0.20 4.304+0.15 4.18+0.17 4.50+0.18
Question (2) ours 392 +0.16 4.45+0.12 4.03 £0.15 3.34 £0.17 3.85 +£0.20 3.95 +0.22
Question (3) ours 395 +0.23 3.20+£0.24 3.24 £0.25 3.22 4+0.27 3.49 +£0.22 3.39 +0.23
Question (1) for [20]  3.67 £0.17 4.16 £0.18 3.39 £0.19 3.34 £0.13 4.24 +£0.12 3.15 £0.15
Question (2) for [20]  1.87 £0.35 4.42 4+0.22 3.00 £0.32 2.67 £0.33 2.20 +£0.42 3.30 £0.22
Question (3) for [20]  3.95 £0.15 2.93 £0.22 3.37 £0.25 3.40 £0.27 3.43 +£0.28 3.75 £0.20

Table 2. Given 20 randomly selected images a € A and b € B, we consider the generated image G(E“(a),0, E%(b))) and ask if (1) a’s
separate part is removed (2) b’s separate part is added (3) a’s common part is preserved (similarly in the reverse direction). Mean opinion
scores in the range of 1 to 5 are reported, where higher is better.



Minimality

* Potentially Infinitely many solutions preserving distance correlations
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Figure 1: An illustrative example where the two domains are line segments in R2. There are infinitely
many mappings that preserve the uniform distribution on the two segments. However, only two stand
out as “semantic”. These are exactly the two mappings that can be captured by a neural network with
only two hidden neurons and Leaky ReLU activations, i.e., by a function h(z) = o,(Wz + b), for a
weight matrix W and the bias vector b.
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Quantitative Results

Table 1: Ablation study for the MNIST to SVHN translation (and vice versa). We consider the
contribution of various parts of our method on the accuracy. Translation is done for one sample.

Augment- One-way Selective Accuracy Accuracy
ation cycle backprop (MNIST to SVHN) (SVHN to MNIST)
False False False 0.07 0.10
True False False 0.11 0.11
False True False 0.13 0.13
True True False 0.14 0.14
False False True 0.19 0.20
True False True 0.20 0.20
False True True 0.22 0.23
True True No Phase II update 0.16 0.15
of E° and G°

True Two-way cycle True 0.20 0.13
True Two-way cycle False 0.11 0.12
True True True 0.23 0.23
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Quantitative Results

Table 2: (1) Measuring the perceptual distance [29], between inputs and their corresponding output
images of different style transfer tasks. Low perceptual loss indicates that much of the high-level
content is preserved in the translation. (i1) Measuring the style difference between translated images
and images from the target domain. We compute the average Gram matrix of translated images and
images from the target domain and find the average distance between them, as described in [29].

Component Dataset OST UNIT [7] CycleGAN [2] UNIT[7] CycleGAN [2]
Samples in A 1 1 1 All All

(1) Content  Summer2Winter .64 3.20 3.53 1.41 0.41
Winter2Summer (.73 3.10 3.48 1.38 0.40
Monet2Photo 3.75 6.82 5.80 1.46 1.41
Photo2Monet 1.47 2.92 2.98 2.01 1.46

(i1) Style Summer2Winter 1.64 6.51 1.62 1.69 1.69
Winter2Summer  1.58 6.80 1.31 1.69 1.66
Monet2Photo 1.20 6.83 0.90 1.21 1.18
Photo2Monet 1.95 7.53 1.91 2.12 1.88
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Quantitative Results

Table 3: (1) Perceptual distance [29] between the inputs and corresponding output images, for various
drawing tasks. (ii) Style difference between translated images and images from the target domain.
(111) Correctness of translation as evaluated by a user study.

Method Images to  Facades Images Mapsto Labelsto  Cityscapes
Facades toImages To Maps Images Cityscapes to Labels
(1) OST 1 4.76 5.05 2.49 2.36 3.34 2.39
UNIT [7] All 3.85 4.80 2.42 2.30 2.61 2.18
CycleGAN [2] All 3.79 4.49 2.49 2.11 2.73 2.28
(11) OST 1 3.57 7.88 2.24 1.50 0.67 1.13
UNIT [7] All 3.92 7.42 2.56 1.59 0.69 1.21
CycleGAN [2] All 3.81 7.03 2.33 1.30 0.77 1.22
(111) OST 1 91% 90% 83% 67% 66% 56%
UNIT [7] ALL 86% 83% 81% 75% 63% 37%

CycleGAN [2] ALL 93% 84% 97% 81% 72% 45%
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