Structure-Aware Manipulation of Images and Videos

Sagie Benaim

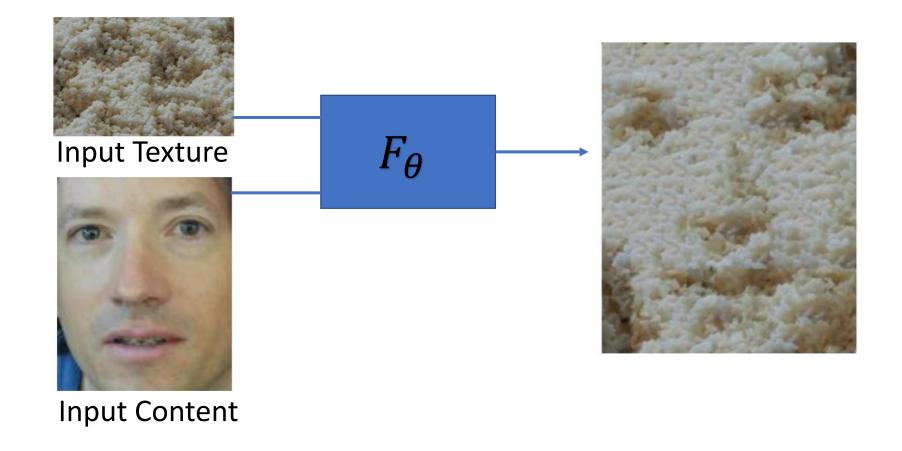
School of Computer Science, Tel Aviv University

What is a natural image?

Intelligent
machines must
understand
perceived
content

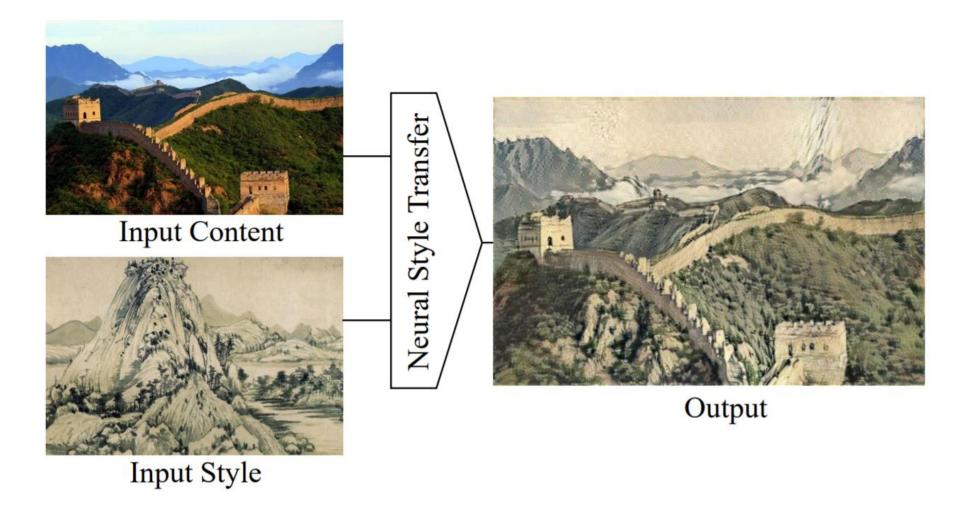
Understanding by creating/manipulating: "What I cannot create, I do not understand" (Richard Feynman)

Manipulating Texture



A.A.Efros, W.T.Freeman. "Image Quilting for Texture Synthesis and Transfer". SIGGRAPH01

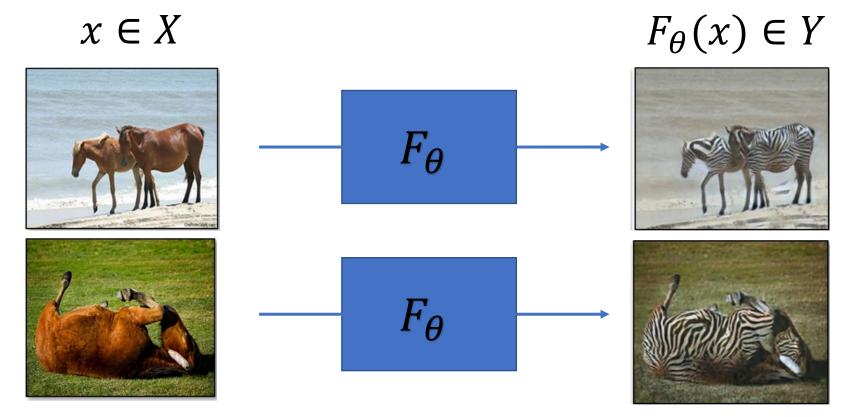
Manipulating Style



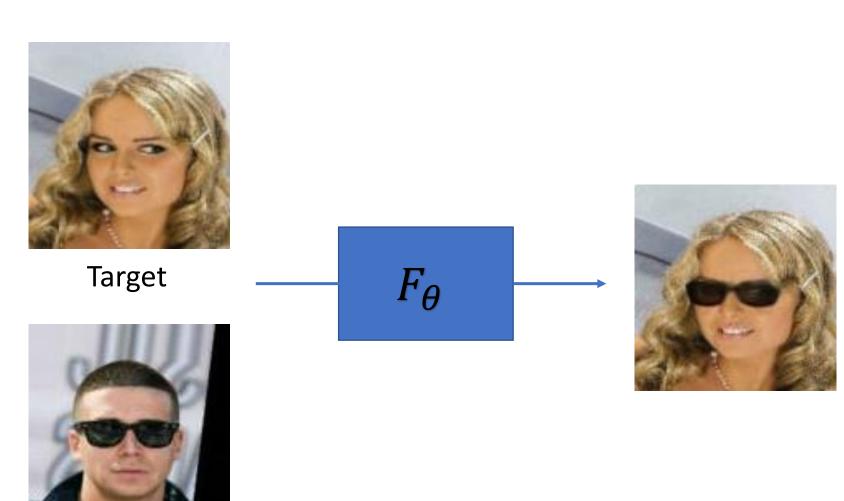
L. A. Gatys, A. S. Ecker, and M. Bethge. "A neural algorithm of artistic style". 2015.

Image to Image Translation

- 1. $F_{\theta}(x)$ preserves the **structure** of objects of x
- 2. $F_{\theta}(x)$ belongs to Y's distribution (changes **style**)

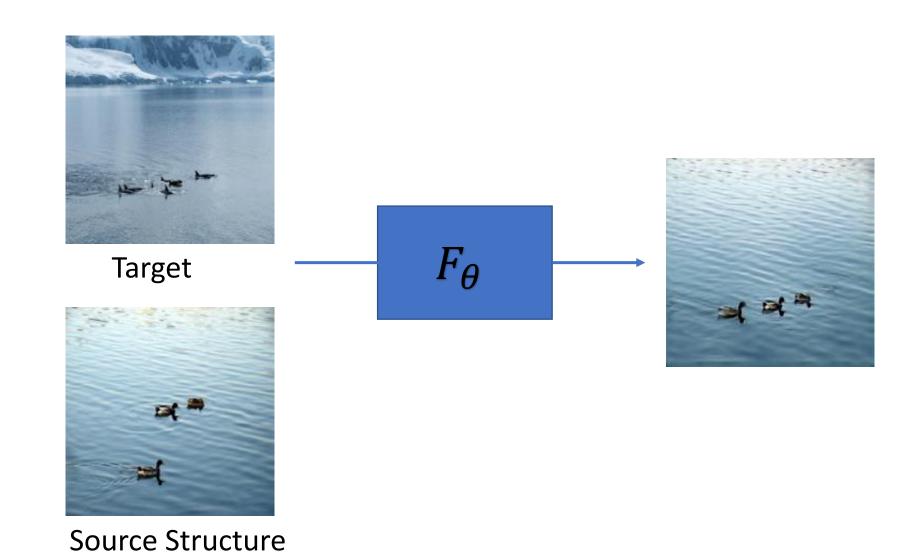


Manipulating Structure



Source Structure

Manipulating Structure



Architecture

Applications

Video games

Movies

Advertising

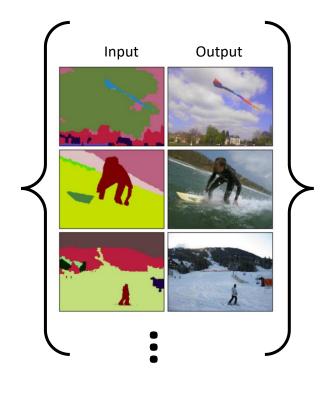
AR/VR

Autonomous Driving Simulations

Multi-Image Approaches

Supervised (Paired) Setting

Train Test



Unsupervised (Unpaired) Setting

Faces without glasses

Faces with glasses

Control Structure of Generated Faces (Transfer Glasses)

Common

Separate

Unsupervised Approaches

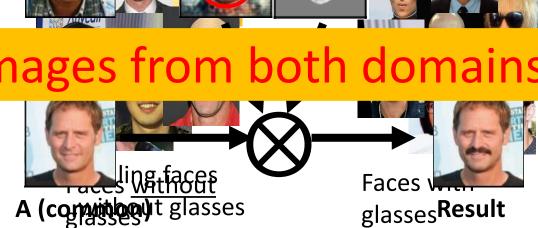
O. Press, T. Galanti, **S. Benaim,** L. Wolf. Emerging Disentanglement in Auto-Encoder Based Unsupervised Image Content Transfer. In **ICLR 2019.**

S Renaim M Khaitov T Galanti I Wolf

Require a large collection of images from both domains

III ICCV, ZUIJ.

R. Mokady, **S. Benaim**, L. Wolf, A. Bermano. Mask Based Unsupervised Content Transfer. In **ICLR**, **2020**.



Patch-Based Approaches

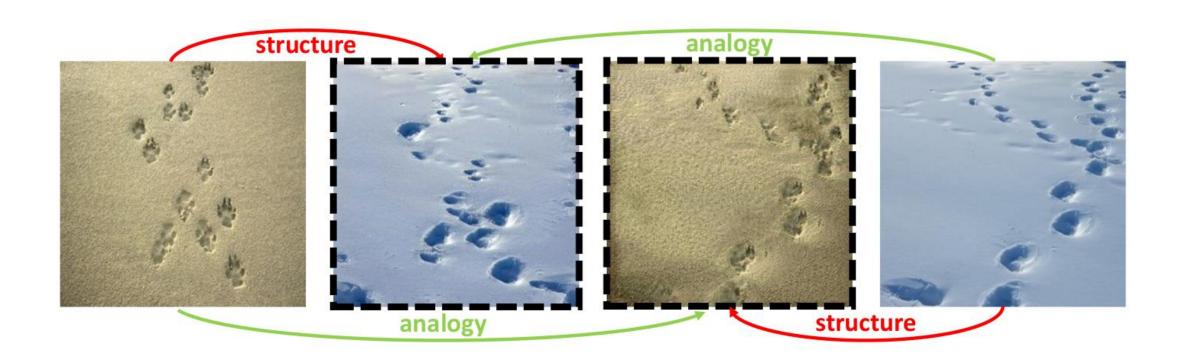
Multi-Image Distribution

Multi-Scale Patch Distribution

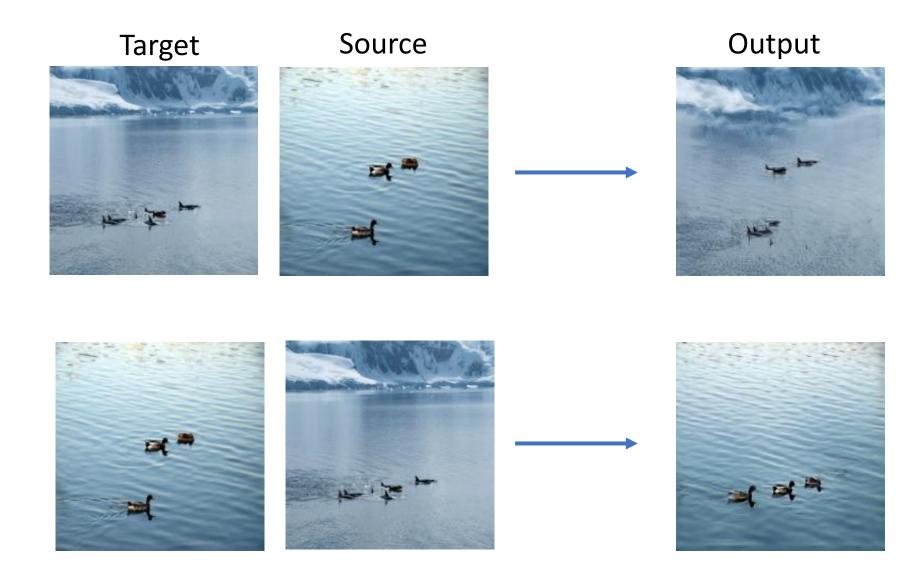
Structural-analogy from a Single Image Pair

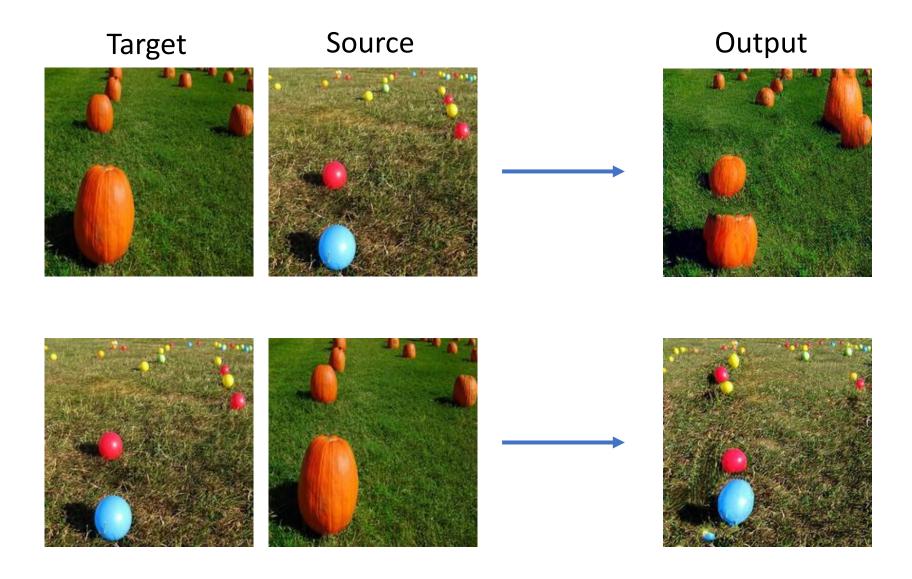
S. Benaim*, R. Mokady*, A. Bermano, D Cohen-Or, L. Wolf. CGF 2020. (*Equal contribution)

Generate an image which is aligned to the source image but depicts structure from a target image



Source Output Target

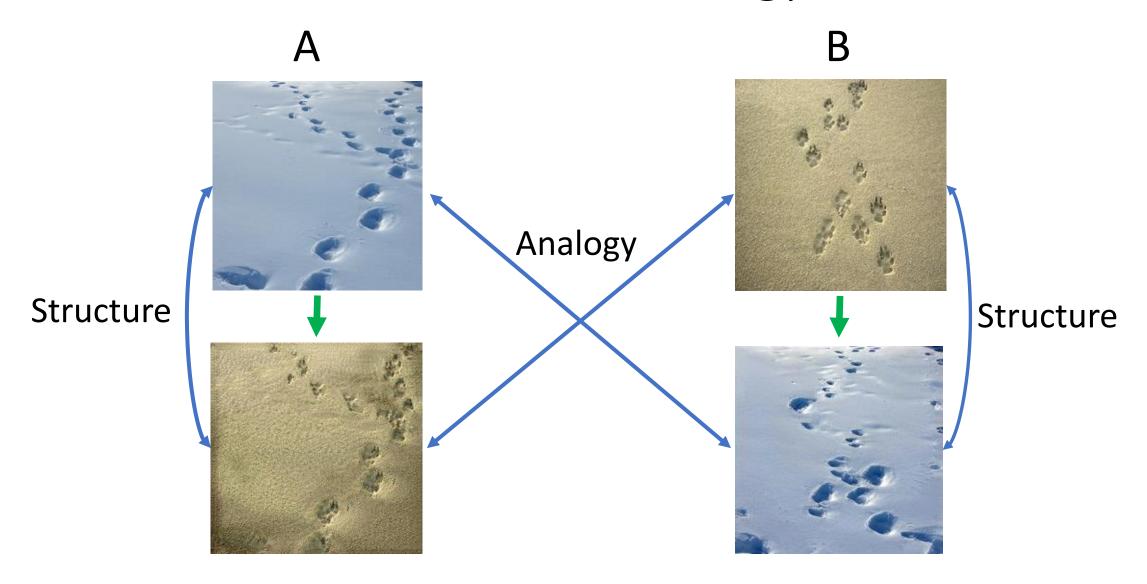




Style Transfer

Deep Image Analogy

Cannot Change Object Shape

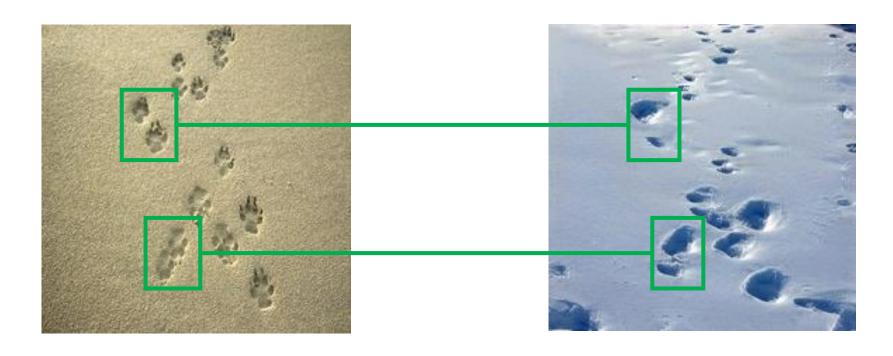


Motivation

A

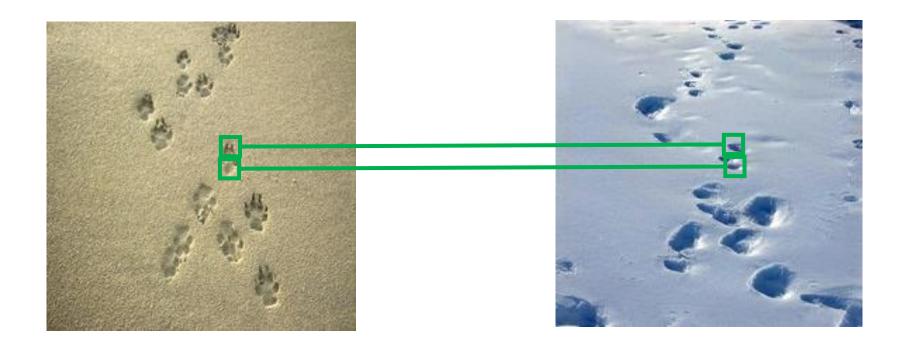
Motivation

A B



Motivation

A



Proposed Hierarchical Approach

Coarsest scale:

Large Patches

Finest scale:

Small Patches

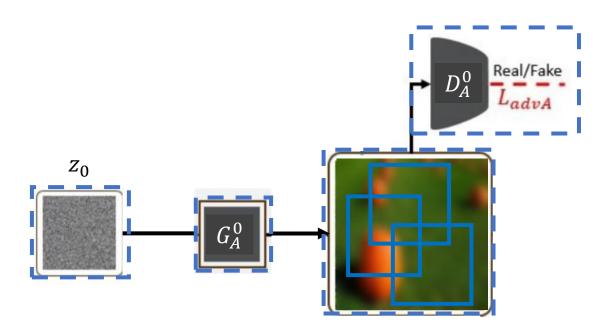
 \bar{a}^0 (Unconditional) $\bar{a}\bar{b}^0$ (Conditional)

 \overline{a}^{N} (Unconditional) \overline{ab}^{N} (Conditional)

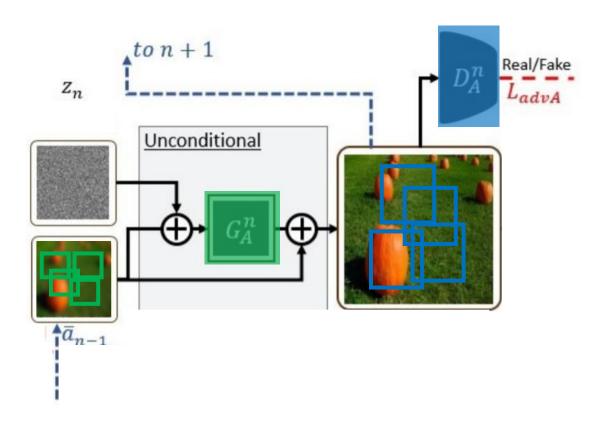
LEVEL = 0

LEVEL = N

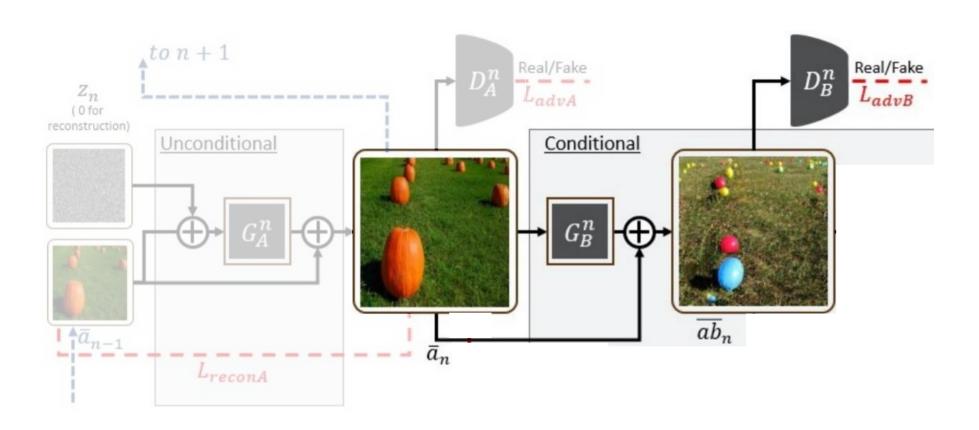
<u>Unconditional</u> Generation (Level 0)



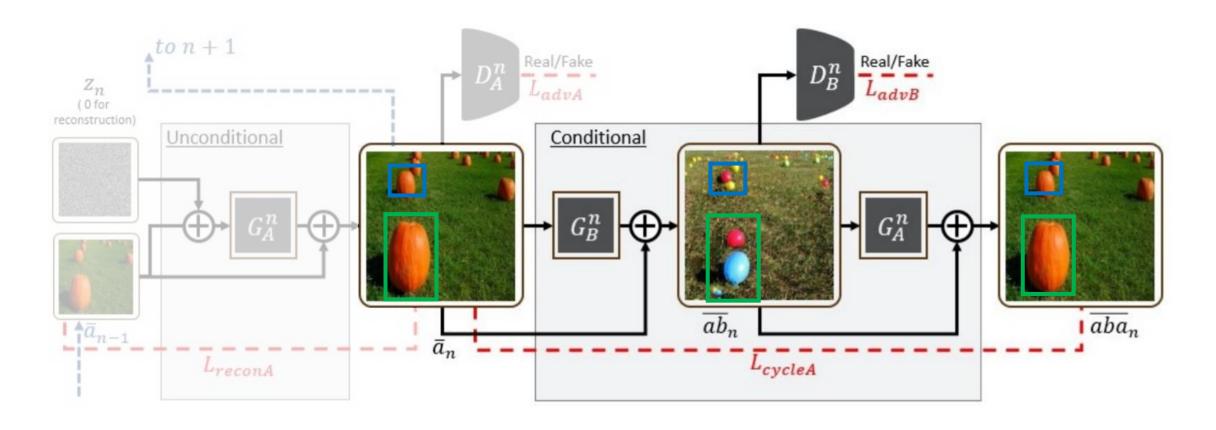
Unconditional Generation (Level n)



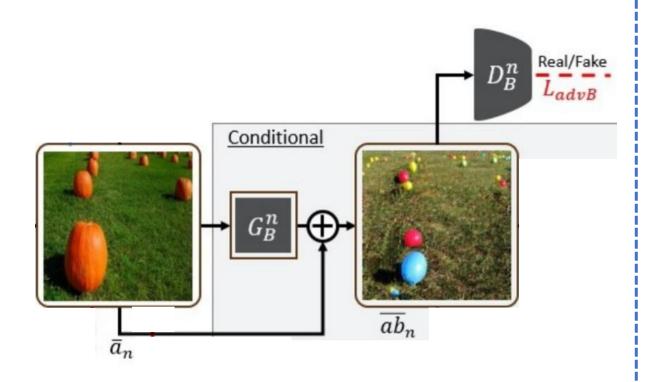
Conditional Generation (Level n)

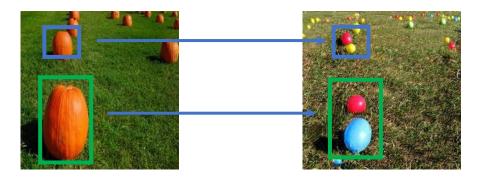


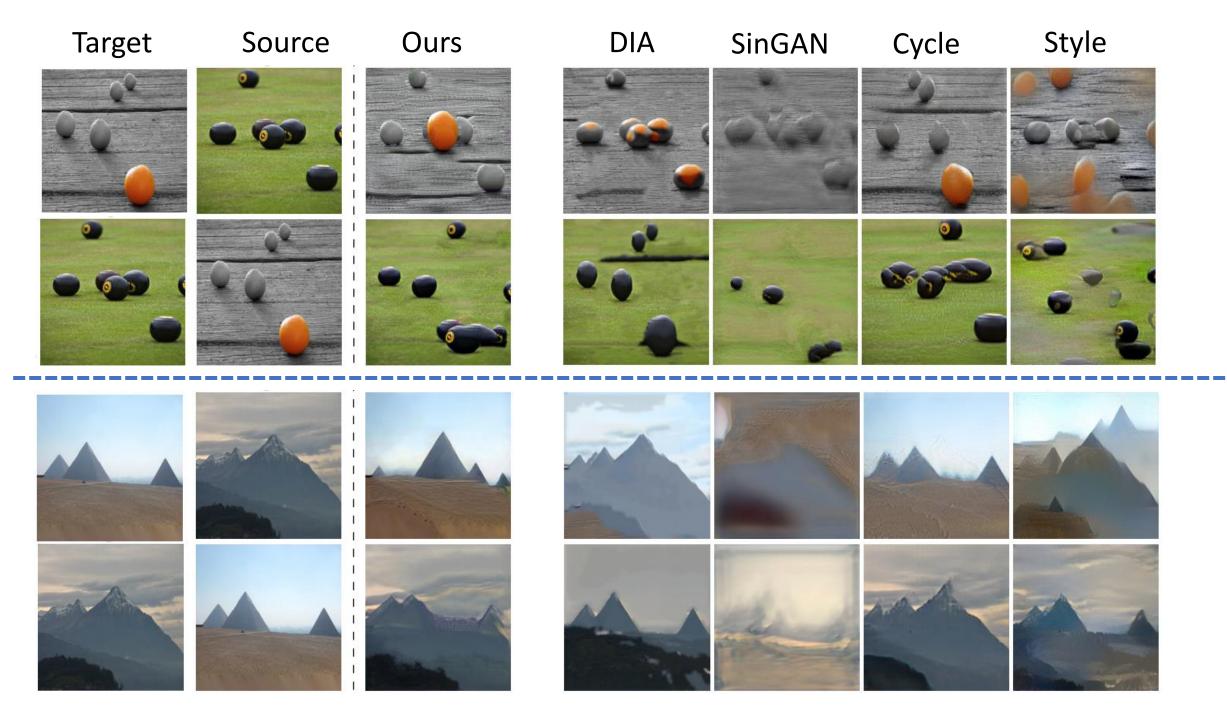
Conditional Generation (Level n)



Coarse and Mid Scales: Residual Training





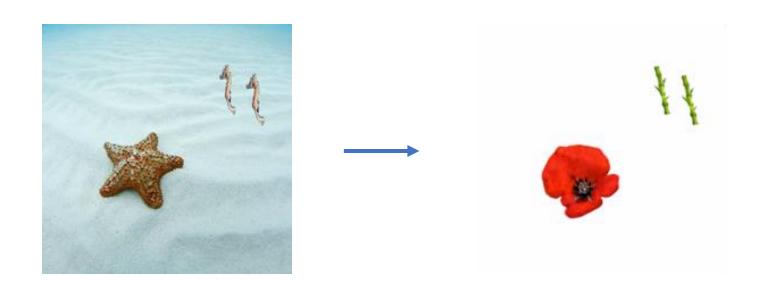


Multiple Class Types

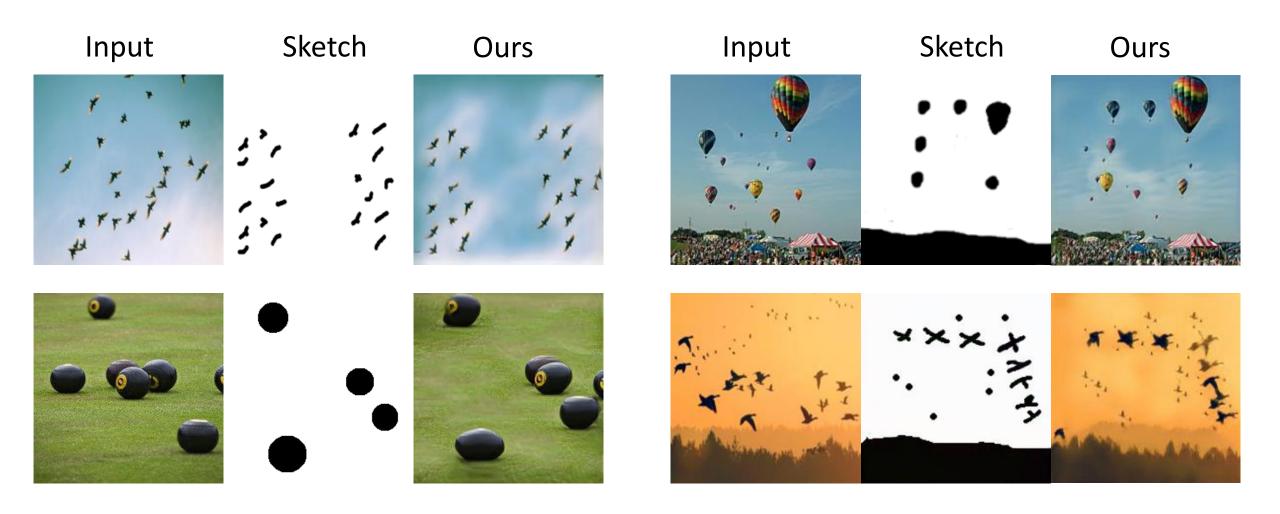
Input Output

Input

Output



Paint to Image



Video Generation

Structure Manipulation for Videos

Hierarchical Patch VAE-GAN: Generating Diverse Videos from a **Single Sample**

S. Gur*, **S. Benaim***, L. Wolf. NeurIPS 2020 (*Equal contribution)

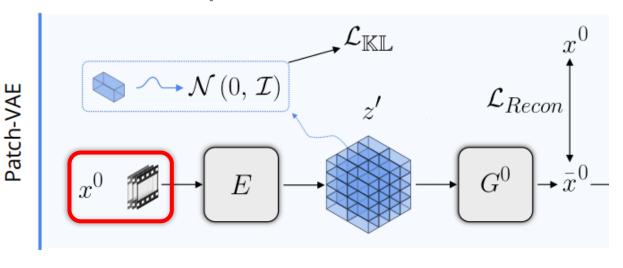
Hierarchical Patch VAE-GAN:

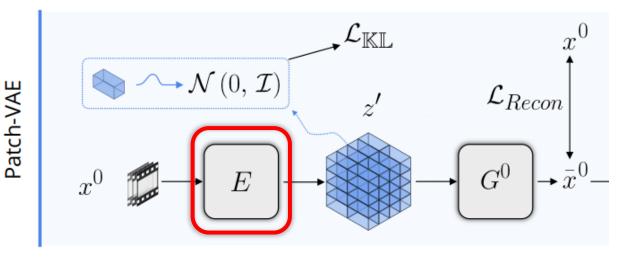
Generating Diverse Videos from a Single Sample

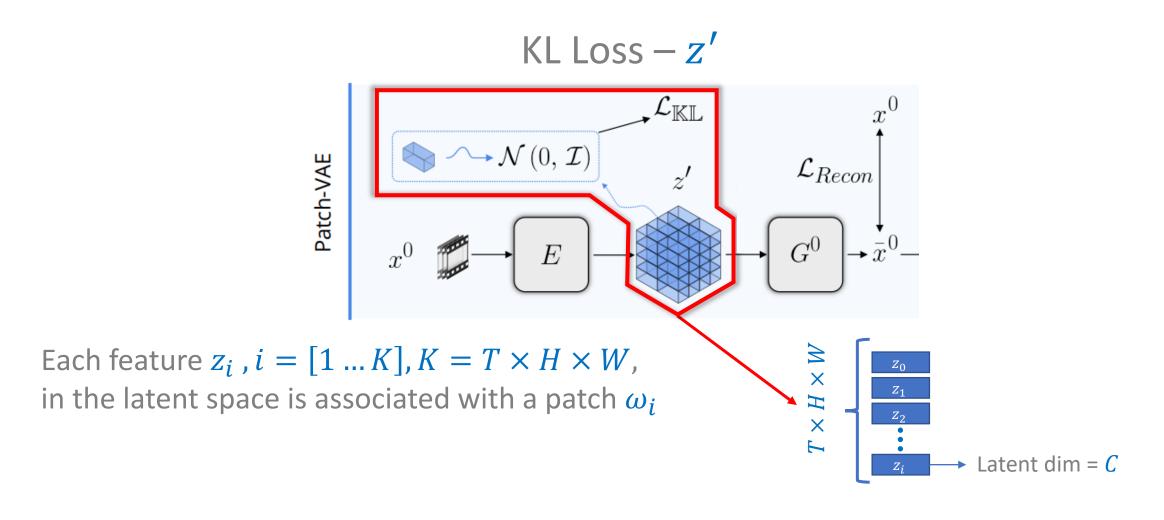
S. Gur*, **S. Benaim***, L. Wolf. NeurIPS 2020 (*Equal contribution)

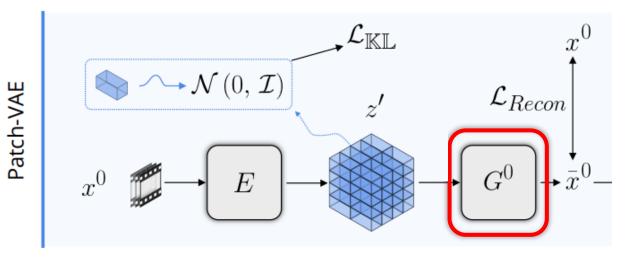
Generated Samples (13 Frames) Real

Input video - x^0

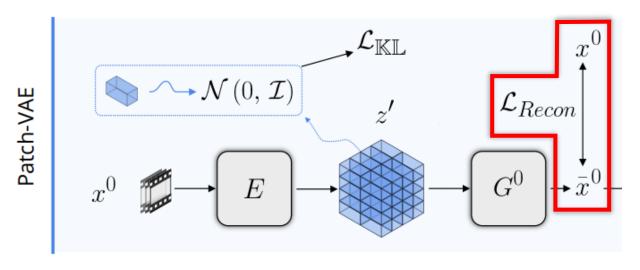








Reconstruction loss



Coarsest scale: Low resolution

and frame rate

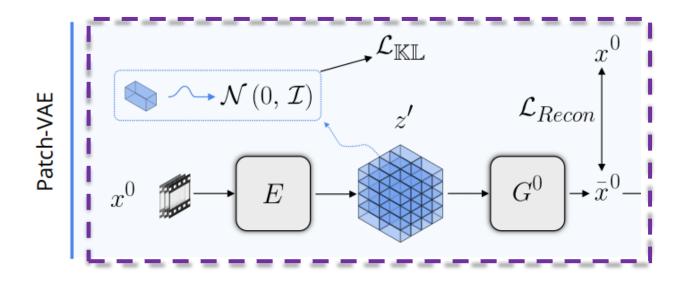
 x^0 (Real) \bar{x}^0 (Generated)

LEVEL = 0

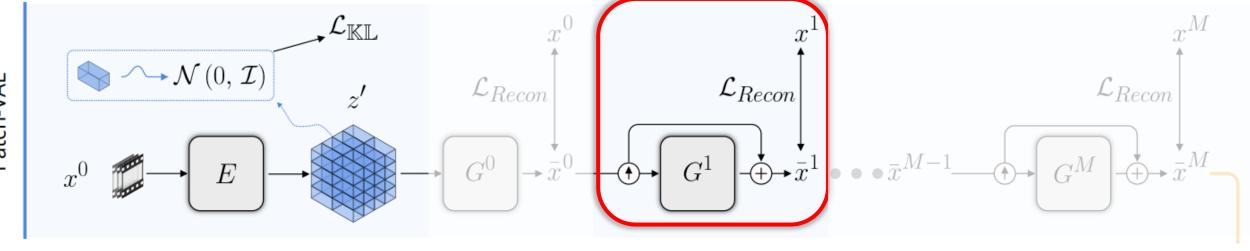
Finest scale:
High resolution
and frame rate

 x^N (Real) \bar{x}^N (Generated)

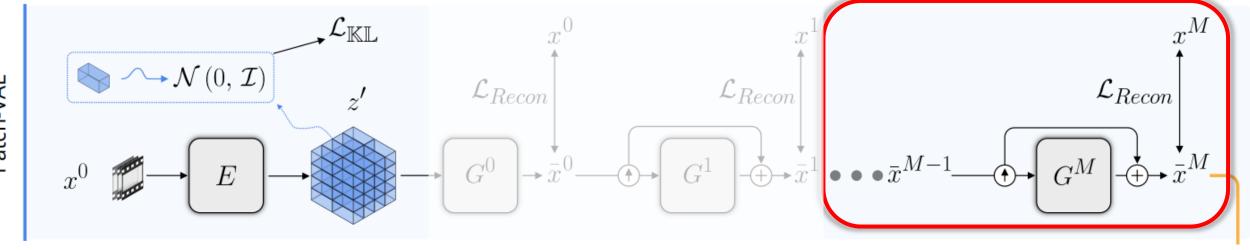
LEVEL = N



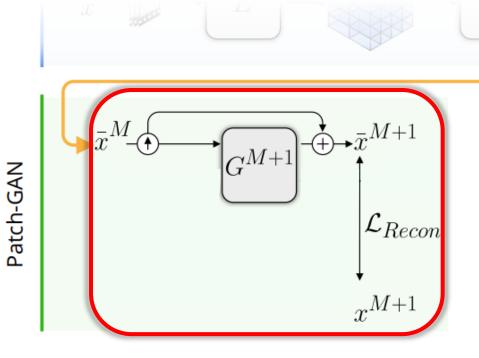
Up-sampling block - \bar{x}^1



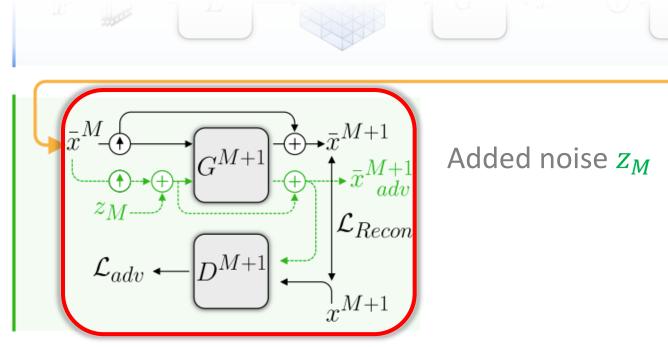
Hierarchical up-sampling up to \bar{x}^M



Up-sampling block \bar{x}^{M+1}

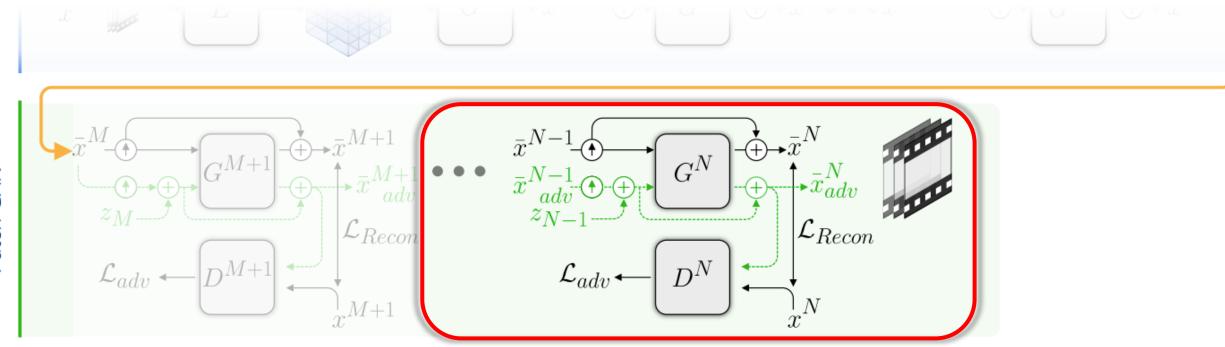


Adversarial training



LEVEL = M + 1

Hierarchical up-sampling up to final resolution \bar{x}^N



Effect of Number of patch-VAE levels

Training Video

9 Levels Total

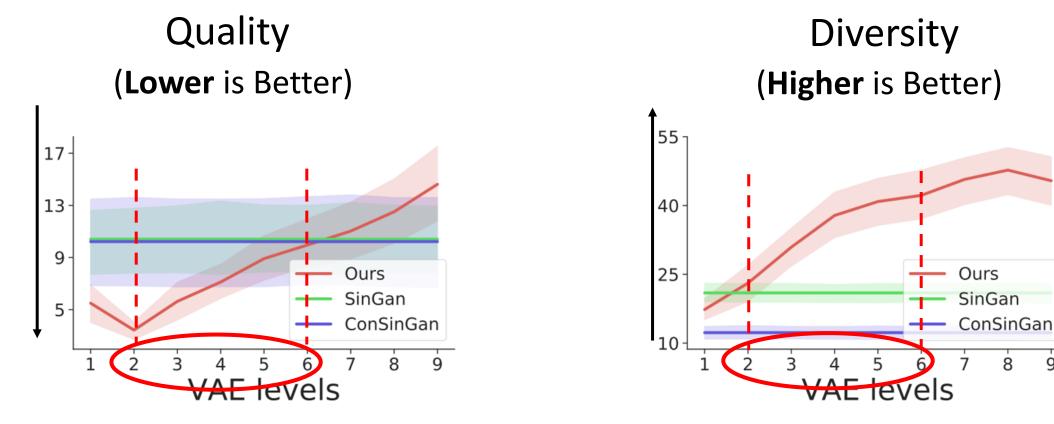
1 p-VAE – 8 p-GAN

8 p-VAE - 1 p-GAN

3 p-VAE - 6 p-GAN

Effect of Number of patch-VAE levels

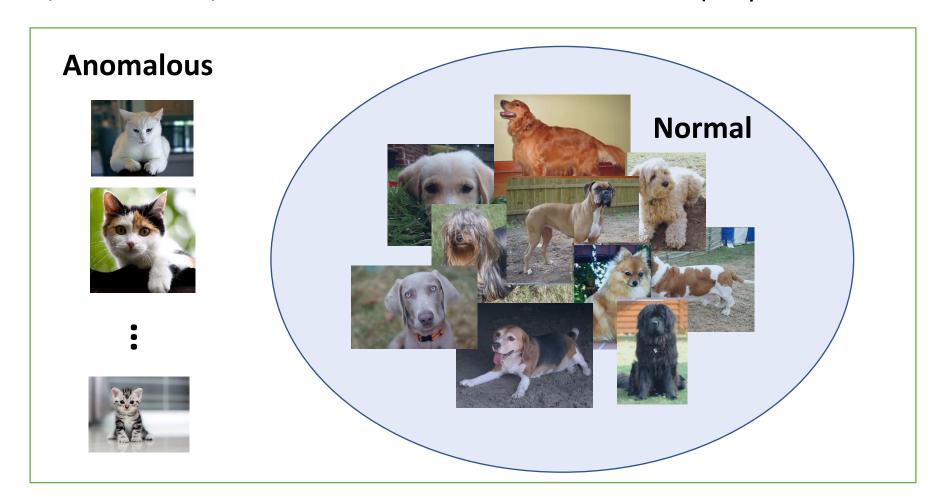
Total of 9 layers



Structure Manipulation for Downstream Tasks

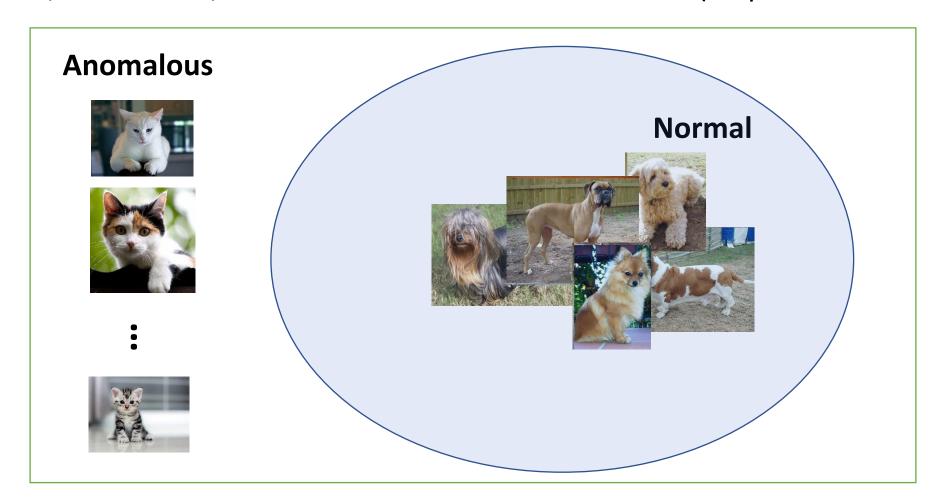
A Hierarchical Transformation-Discriminating Generative Model for Few Shot Anomaly Detection

S. Sheynin*, S. Benaim*, L. Wolf. In Submission to ICCV 2021. (*Equal contribution)



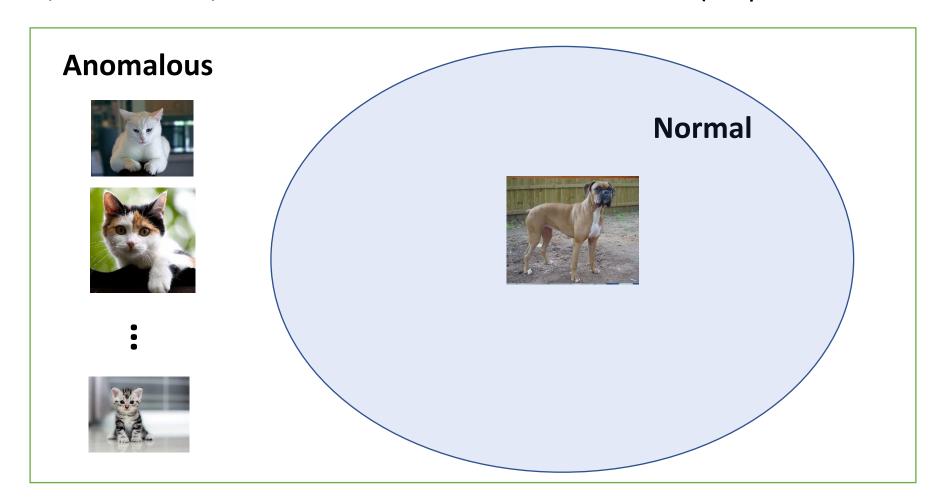
A Hierarchical Transformation-Discriminating Generative Model for Few Shot Anomaly Detection

S. Sheynin*, S. Benaim*, L. Wolf. In Submission to ICCV 2021. (*Equal contribution)

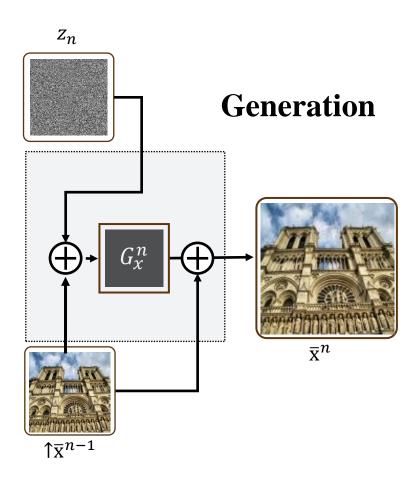


A Hierarchical Transformation-Discriminating Generative Model for Few Shot Anomaly Detection

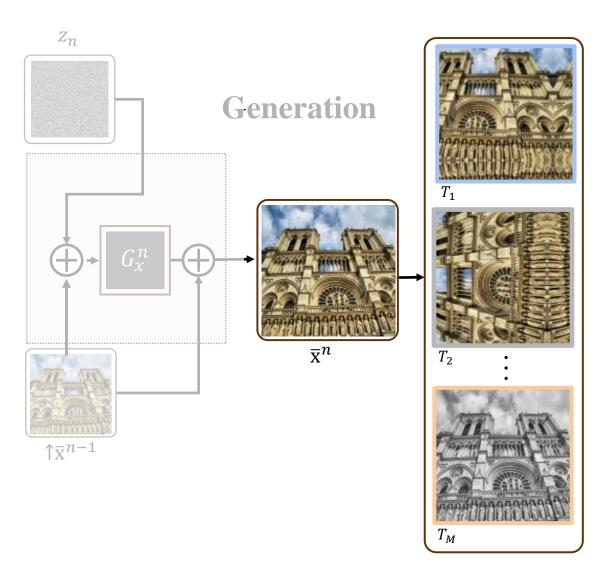
S. Sheynin*, S. Benaim*, L. Wolf. In Submission to ICCV 2021. (*Equal contribution)



Unconditional **Generation** (Level n)



Transform Generated Sample



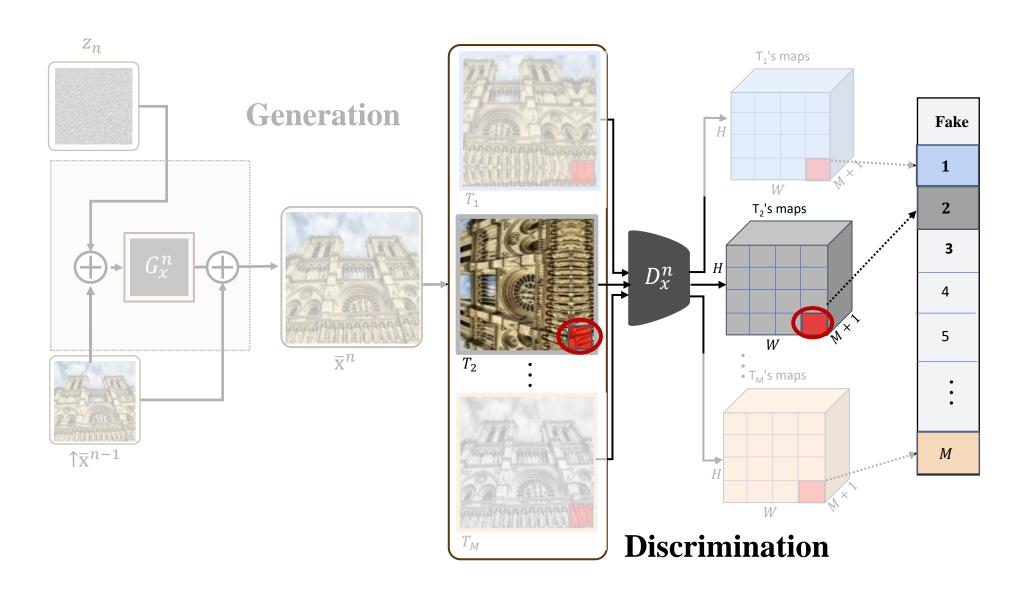
T₁: Horizontal Flip, Translation (y-axis)

T₂: 90° Rotation, Translation (x-axis), Translation (y-axis)

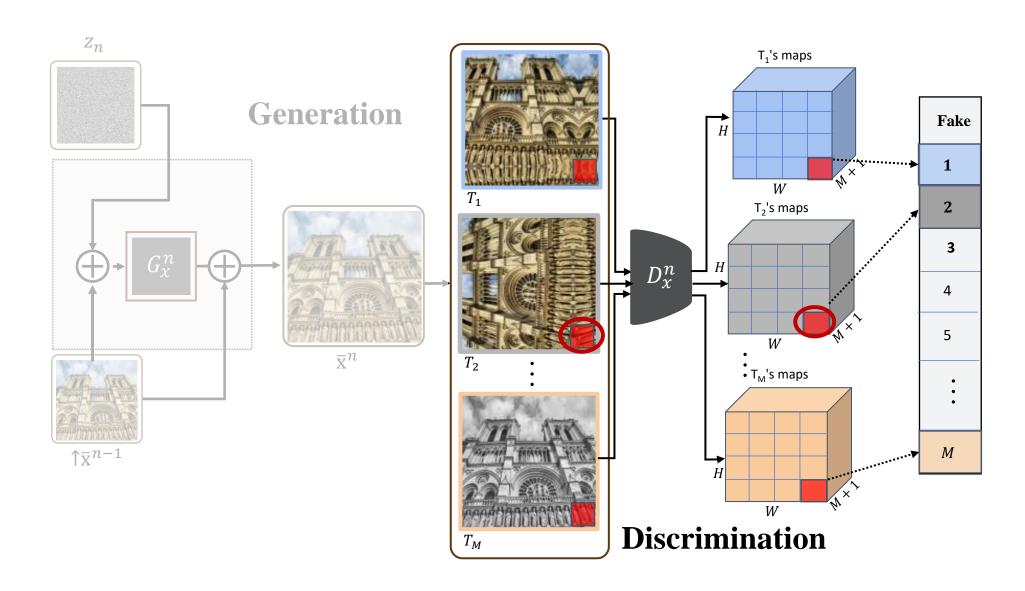
• • •

T_M: Grayscale (y-axis)

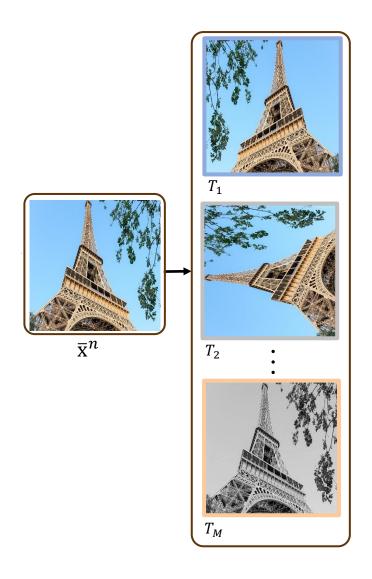
Patch-Based Self Supervised Task



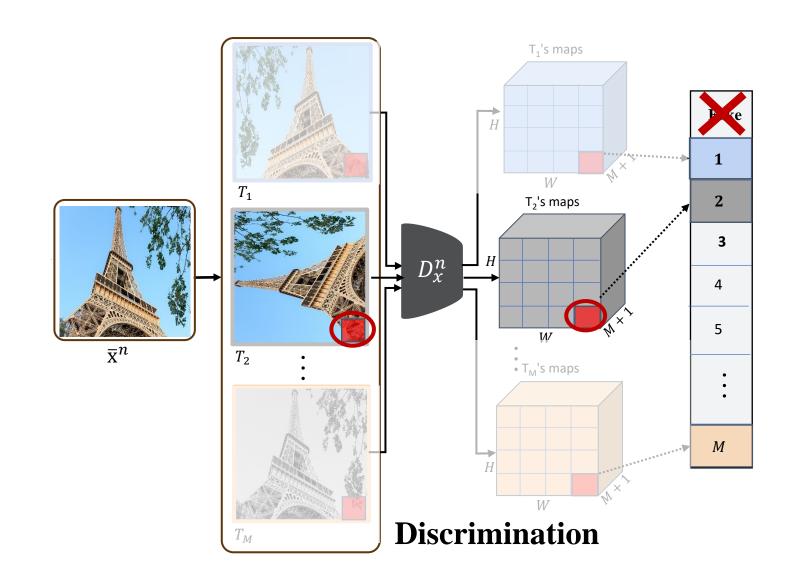
Patch-Based Self Supervised Task



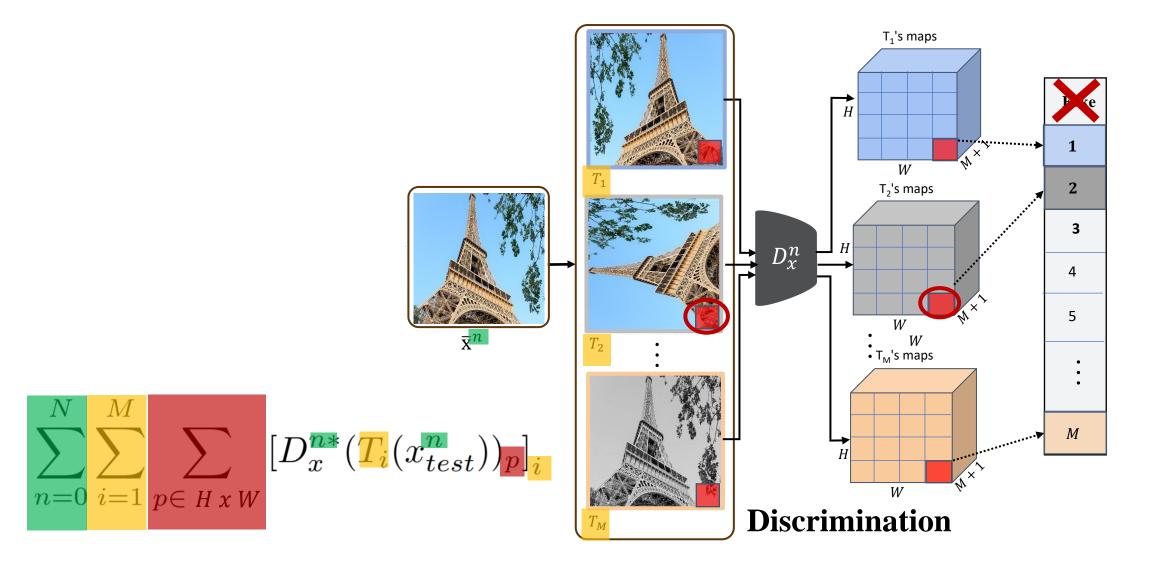
Test Time: Anomaly Score (Scale n)



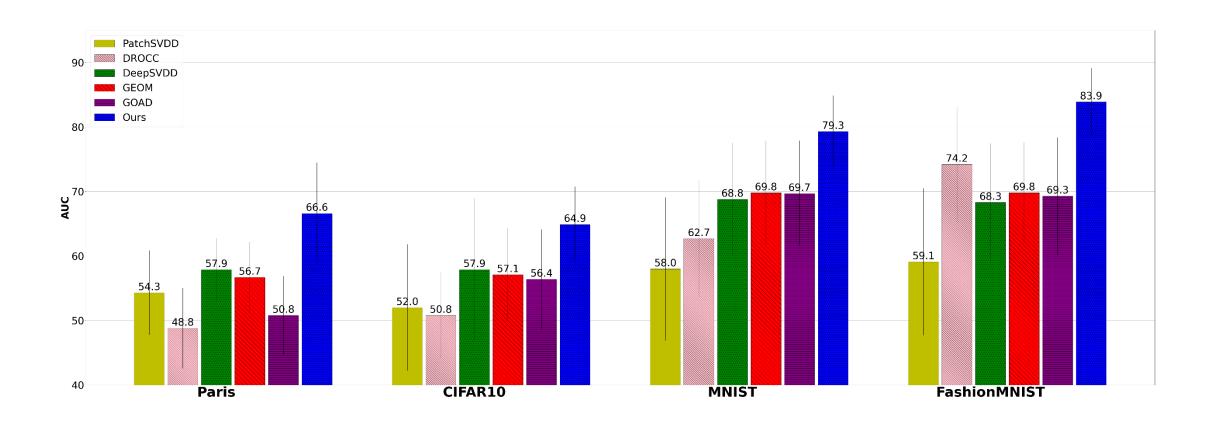
Test Time: Anomaly Score (Scale n)



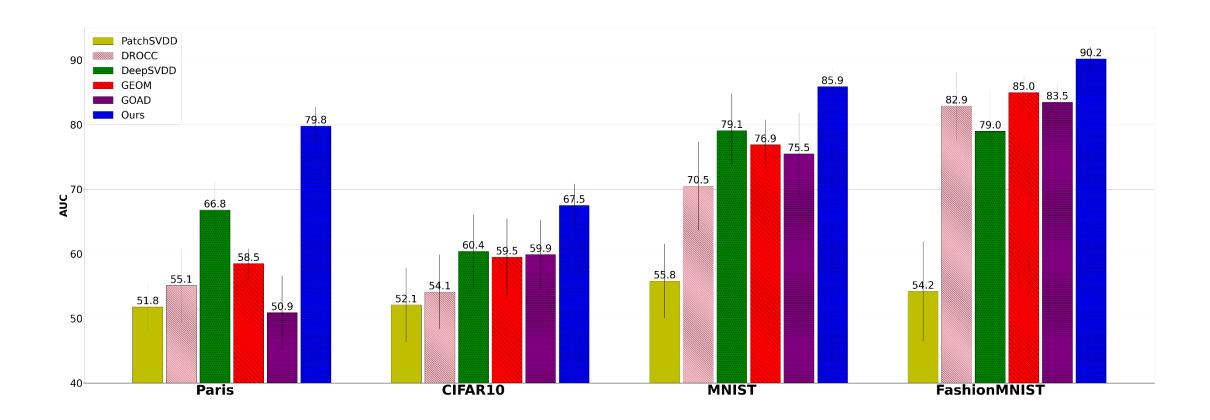
Test Time: Anomaly Score (Scale n)



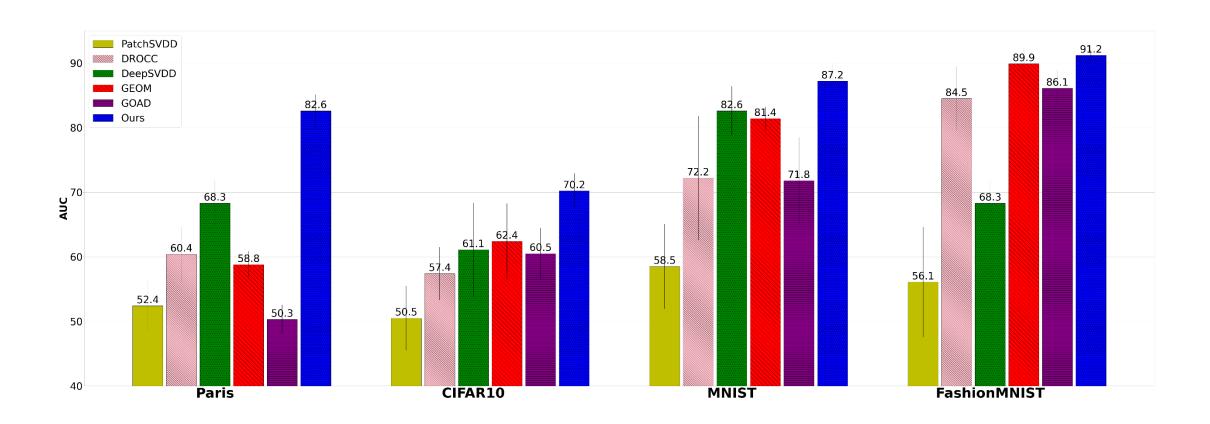
One-Shot



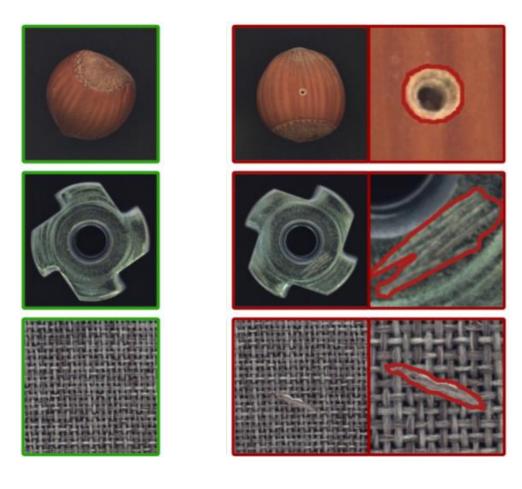
Five-Shot



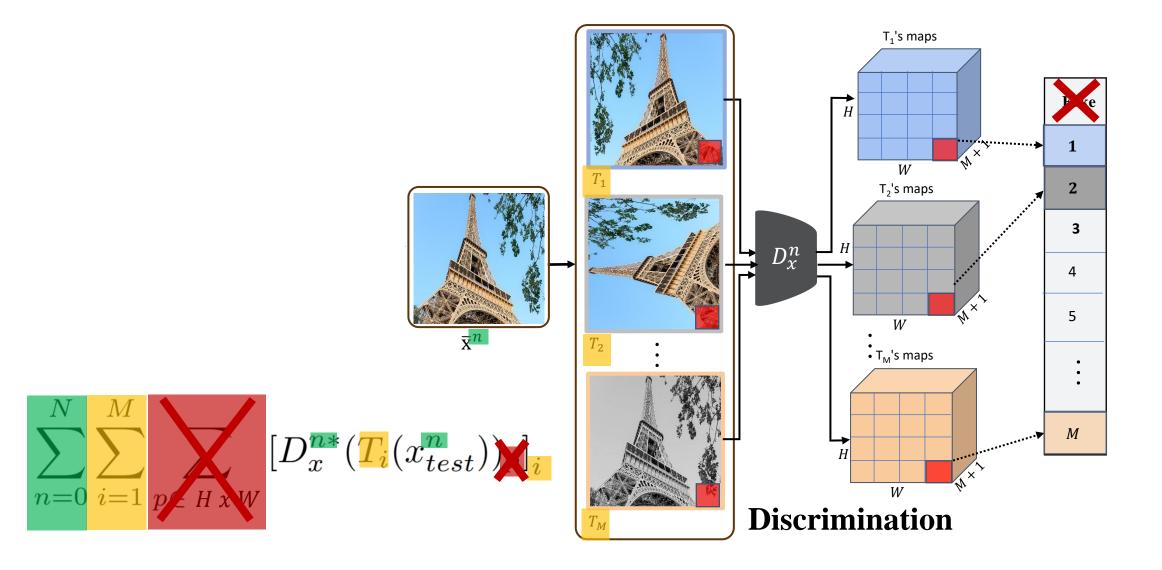
Ten-Shot



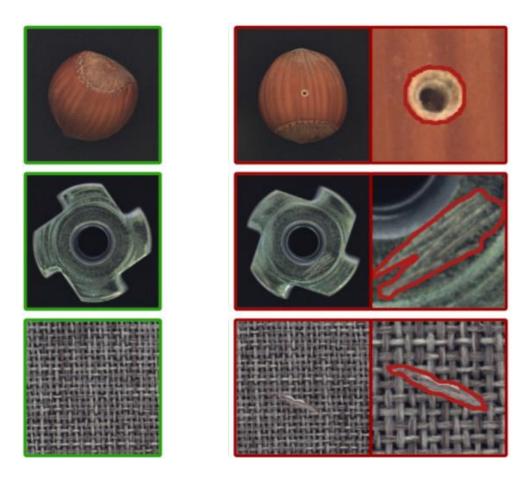
One Shot Defect Localization

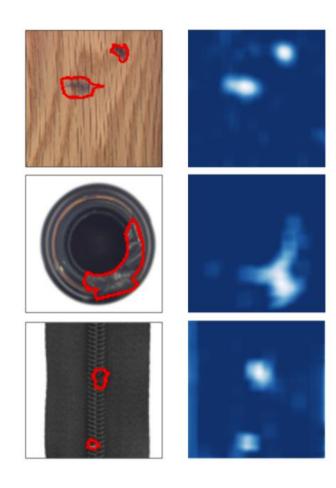


One Shot Defect Localization

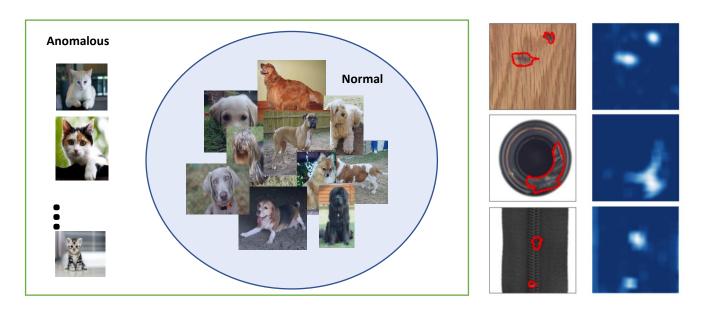


One Shot Defect Localization





Part II: Warnipulating Stylleturerstanding Structure



SpeedNet: Learning the Speediness in Videos

S. Benaim, A. Ephrat, O. Lang, I. Mosseri, W. T. Freeman, M. Rubinstein, M. Irani, T. Dekel. CVPR 2020.

Slower

Normal speed

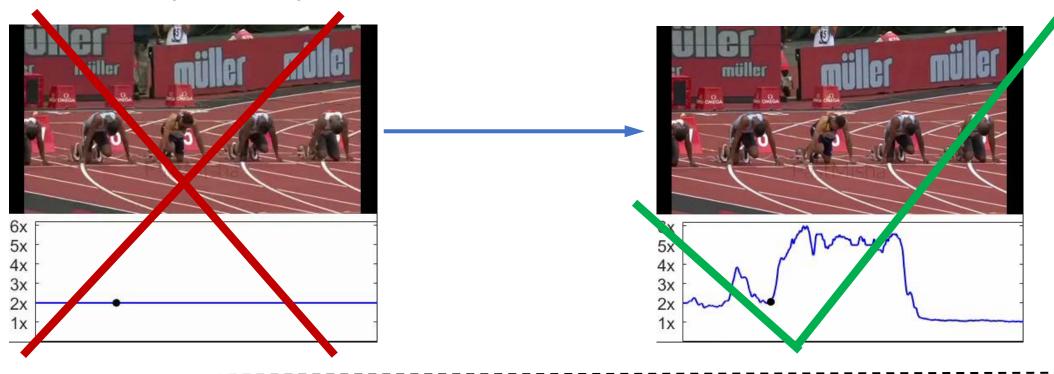
Faster

https://speednet-cvpr20.github.io/

Automatically predict "speediness"

Uniform Speed Up (2x)

Adaptive speed up (2x)

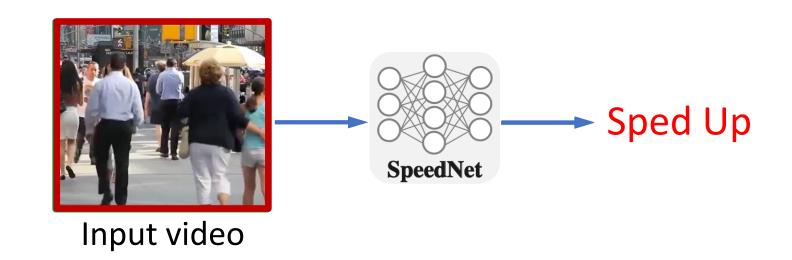


Other Applications:

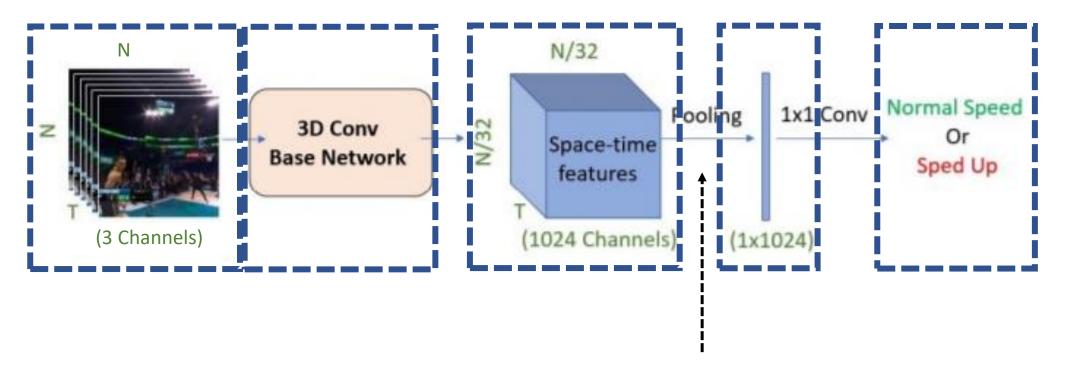
- Self-supervised action recognition
- Video retrieval

Training SpeedNet

Self-supervised training



Training SpeedNet



Spatial Max Pooling
Temporal Average Pooling

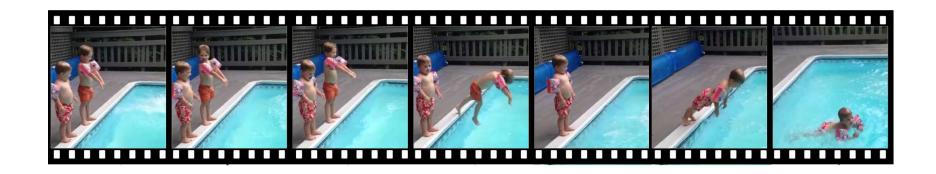
Training SpeedNet: Artificial Cues

Spatial augmentations.

Temporal augmentations

Same-batch training.

Spatial Augmentations



- Random resize of input (both downsample and upsample)
- Network cannot rely on size dependent factors

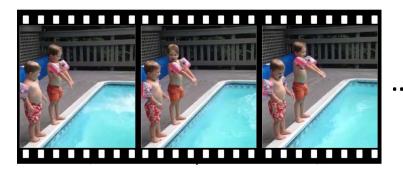
Temporal Augmentations

- Normal speed sample rate: 1-1.2x
- Sped up sample rate: 1.7-2.2x
- Randomly skip frames with probability 1 1/f where f is randomly chosen randomly in the desired range.

Same Batch Training

Same Batch

Normal speed



Speed up

Training SpeedNet: Artificial Cues

NFS: Need For Speed dataset taken at 240 FPS

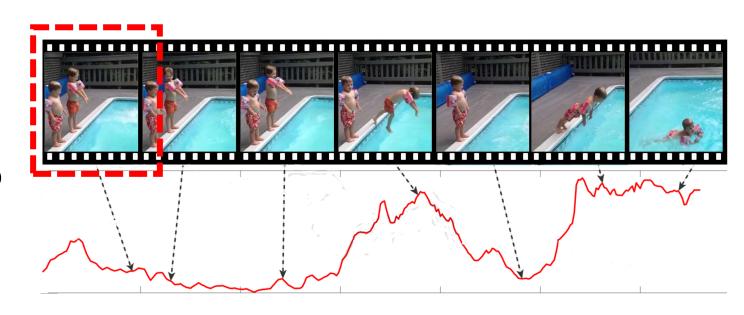
	Model Type		Accui	racy	
Batch	Temporal	Spatial	Kinetics	NFS	No "Shortcuts" -
Yes	Yes	Yes	75.6%	73.6%	- A gap of 2%
No	Yes	Yes	88.2%	59.3%	71 gap 01 270
No	No	Yes	90.0%	57.7%	"Chartente" A
No	No	No	96.9%	57.4%	"Shortcuts" – A
					gan of > 28%

Adaptive video speedup

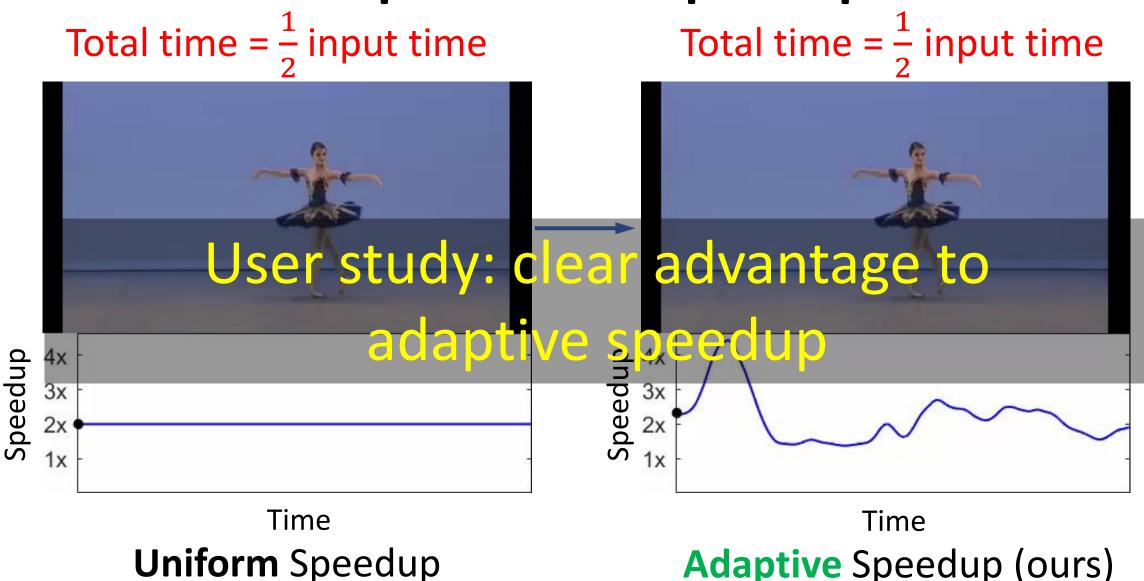
Inference on full sped-up video

Sped-up

Normal speed

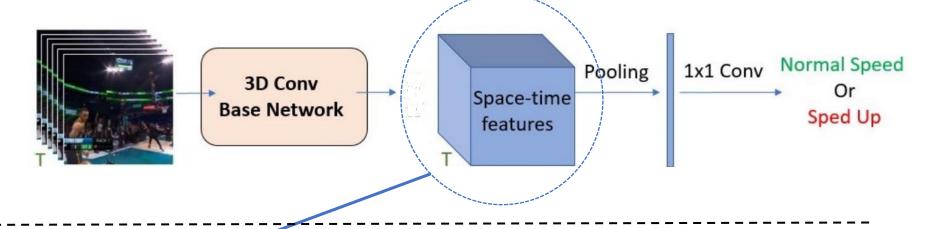


Adaptive video speedup



Other self supervised tasks

Train SpeedNet

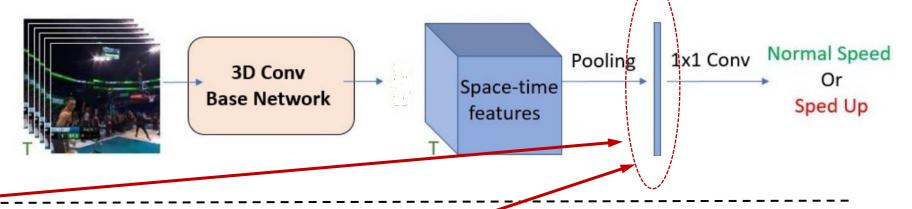


Self Supervised Action Recognition

Initializa	Supervised accuracy						
Method	Architecture	UCF101	HMDB51				
Random init	S3D-G	73.8	46.4				
ImageNet inflated	S3D-G	86.6	57.7				
Kinetics supervised	S3D-G	96.8	74.5				
CubicPuzzle [19]	3D-ResNet18	65.8	33.7				
Order [40]	R(2+1)D	72.4	30.9				
DPC [13]	3D-ResNet34	75.7	35.7				
AoT [38]	T-CAM	79.4					
SpeedNet (Ours)	S3D-G	81.1	48.8				
Random init	I3D	47.9	29.6				
SpeedNet (Ours)	I3D	66.7	43.7				

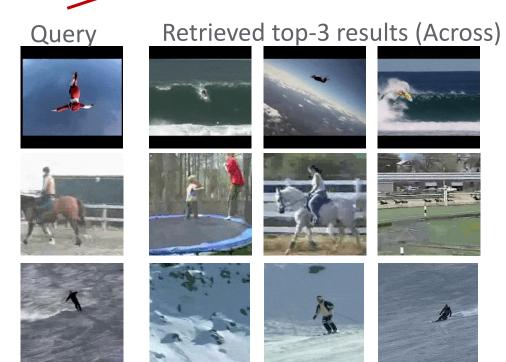
Other self supervised tasks: Video Retrieval

Train SpeedNet

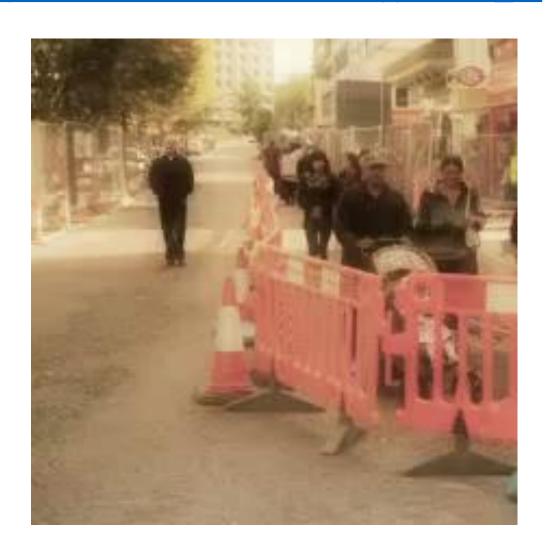




Retrieved top-3 results (Within)



"Memory Eleven": An artistic video by Bill Newsinger: https://www.youtube.com/watch?v=djylS0Wi lo



Spatio-Temporal Visualizations

blue/green =
normal speed

yellow/orange =
slowed down

Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image Classification

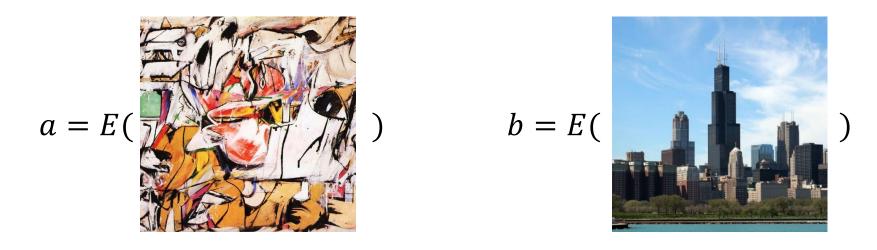
O. Nuriel, S. Benaim, L. Wolf. CVPR 2021.

Swap the **global statistics** of an image while preserving its **structure**

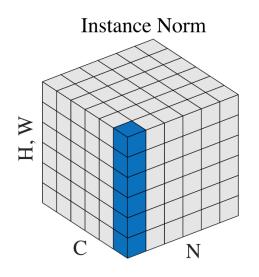
Structure Preserving Transformation

Structure Preserving Transformation

• $a \in \mathbb{R}^{C \times H \times W}$ and $b \in \mathbb{R}^{C \times H \times W}$ be the activations of some encoder E applied on images I_a and I_b respectively.



Instance Normalization



$$b=E($$

$$IN(b)_{chw} = \left(\frac{a_{chw} - \mu_c(b)}{\sigma_c(b)}\right)$$

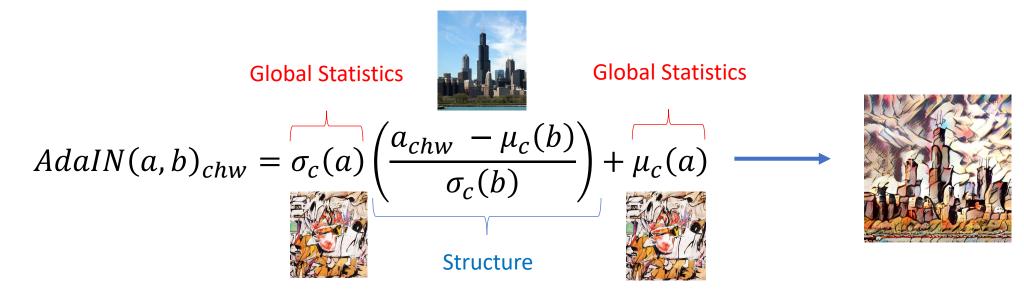
Adaptive Instance Normalization

$$a = E($$

$$b = E($$

$$AdaIN(a,b)_{chw} = \sigma_c(a) \left(\frac{a_{chw} - \mu_c(b)}{\sigma_c(b)} \right) + \mu_c(a)$$

Adaptive Instance Normalization

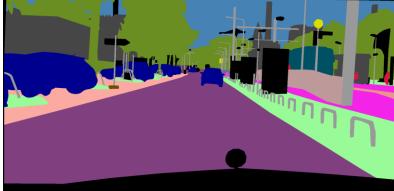


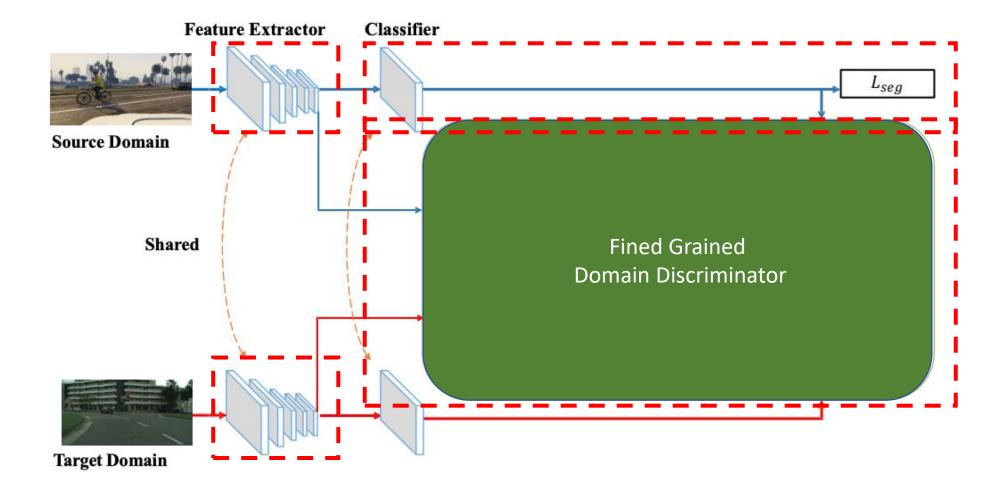
- AdalN swaps the global statistics of a to those of b
- μ and σ represent the **global statistics** of an image (such as brightness, contrast, lighting, global color changes and global texture)
- Structure represents information relating to shape of objects

Supervised training on source domain and unsupervised on target domain

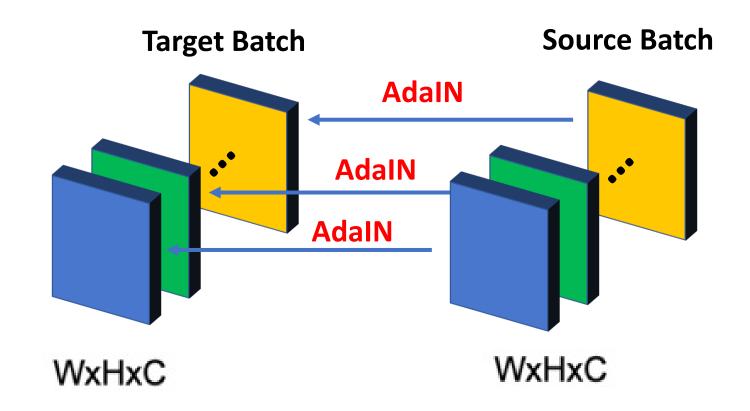
Source: GTAV

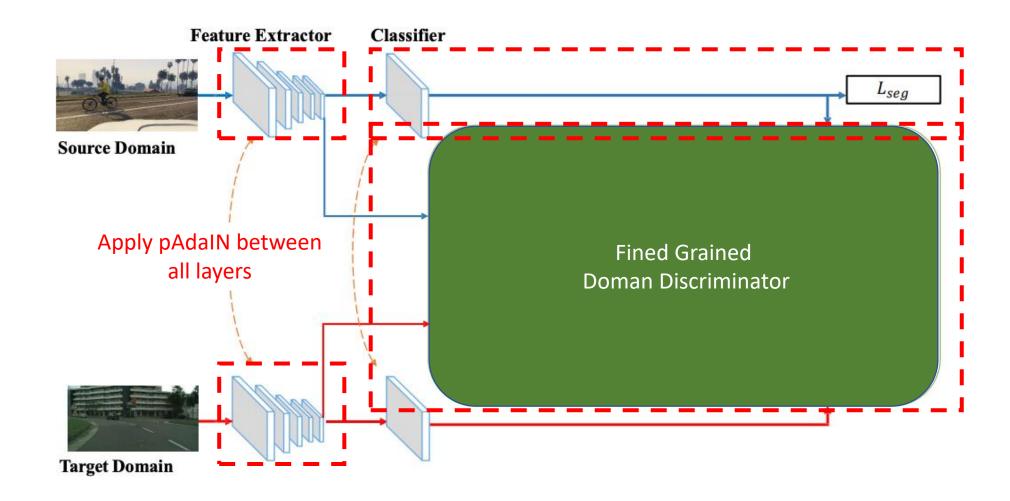
Target: Cityscapes





- Swap global statistics of target features with those of source features by applying AdaIN with probability p.
- Apply at every layer of the feature extractor.





GTAV to Cityscapes

AdaptSegNet [35]	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
SIBAN [28]	88.5	35.4	79.5	26.3	24.3	28.5	32.5	18.3	81.2	40.0	76.5	58.1	25.8	82.6	30.3	34.4	3.4	21.6	21.5	42.6
CLAN [29]	87.0	27.1	79.6	27.3	23.3	28.3	35.5	24.2	83.6	27.4	74.2	58.6	28.0	76.2	33.1	36.7	6.7	31.9	31.4	43.2
AdaptPatch [36]	92.3	51.9	82.1	29.2	25.1	24.5	33.8	33.0	82.4	32.8	82.2	58.6	27.2	84.3	33.4	46.3	2.2	29.5	32.3	46.5
ADVENT [38]	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
FADA [40]	92.5	47.5	85.1	37.6	32.8	33.4	33.8	18.4	85.3	37.7	83.5	63.2	39.7	87.5	32.9	47.8	1.6	34.9	39.5	49.2
FADA [40] + pAdaIN	93.3	55.7	85.6	38.3	29.6	31.2	34.2	17.8	86.2	41.0	88.8	65.1	37.1	87.6	45.9	55.1	15.1	39.4	31.1	51.5

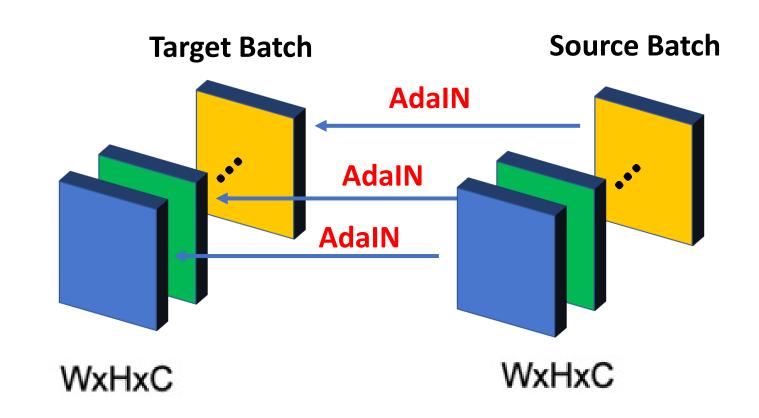


Image Classification

Swap global statistics between every two elements in the batch

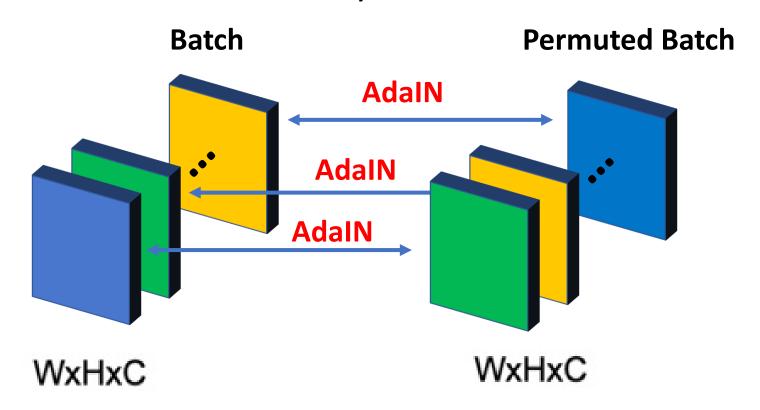


Image Classification

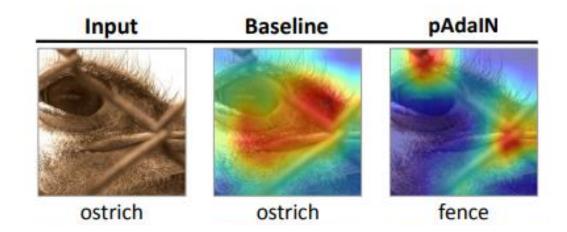
ImageNet

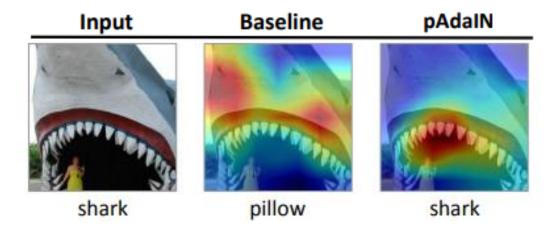
Method	Architecture	Top-1 Accuracy	Top-5 Accuracy
Baseline	ResNet50	77.1	93.63
pAdaIN	ResNet50	77.7	93.93
Baseline	ResNet101	78.13	93.71
pAdaIN	ResNet101	78.8	94.35
Baseline	ResNet152	78.31	94.06
pAdaIN	ResNet152	79.13	94.64

Cifar100

Method	Architecture	CIFAR 100
Baseline	PyramidNet	83.49
pAdaIN	PyramidNet	84.17
Baseline	ResNet18	76.13
pAdaIN	ResNet18	77.82
Baseline	ResNet50	78.22
pAdaIN	ResNet50	79.03

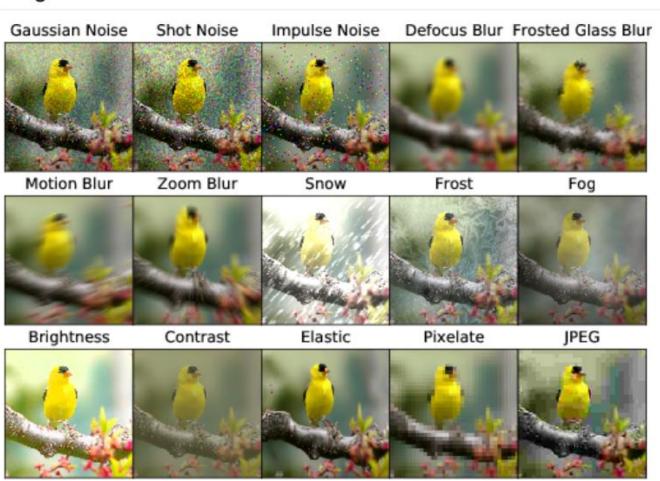
Image Classification





Robustness Towards Corruption

ImageNet-C



Robustness Towards Corruption

CIFAR100-C

	Baseline	Cutout [8]	Mixup [43]	CutMix [43]	Auto- Augment [7]	Adversarial Training [30]	Augmix [18]	pAdaIN+ Augmix
DenseNet-BC	59.3	59.6	55.4	59.2	53.9	55.2	38.9	37.5
ResNext-29	53.4	54.6	51.4	54.1	51.3	54.4	34.4	31.6

Category Wise Breakdown

Dataset Network	Architecture	Е	mCE		Noise		Blur				Weather				Digital			
				Gauss	. Shot	Impulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG
INet-C Baseline	ResNet50	22.9	76.7	80	82	83	75	89	78	80	78	75	66	57	71	85	77	77
INet-C pAdaIN	ResNet50	22.3	72.8	78	79	81	70	87	74	76	74	71	64	55	65	82	66	71
C100-C Augmix [18]	DenseNet-BC	24.2	38.9	60	51	41	27	55	31	29	36	39	35	28	37	33	39	41
C100-C Augmix+pAdaIN	DenseNet-BC	22.2	37.5	58	49	40	26	54	30	28	35	38	33	25	36	32	37	40
C100-C Augmix [18]	ResNext-29	21.0	34.4	56	48	32	23	49	27	25	32	35	32	24	32	30	34	37
C100-C Augmix+pAdaIN	ResNext-29	17.3	31.6	58	48	24	20	54	23	21	28	30	25	19	27	27	33	36

Manipulating Structure

- Multi-sample approaches
- Structural analogies
- Novel videos of similar structure
- Few shot anomaly detection

Manipulating by Understanding Structure

- Speed up videos "gracefully" using "speed" as supervision
- Image classification and domain adaptation using structure preserving manipulation

Structure is Key to **Image Understanding**

Demonstrate using Structure Aware Manipulation

Next?

- 3D-aware structure manipulation
- Manipulating multiple objects in videos
- Functional relationships: A person riding a bike vs a person beside a bike

Thank You! Questions?