Structure-Aware Manipulation of Images and Videos

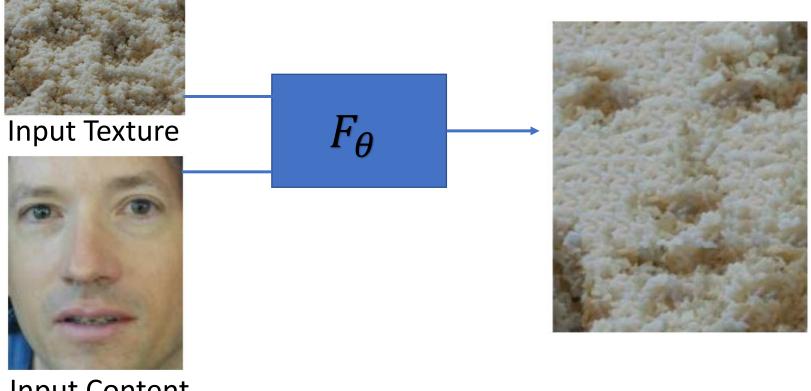
Sagie Benaim School of Computer Science, Tel Aviv University

What is a natural image?

Intelligent machines must **understand** perceived content

Understanding by creating/manipulating: "What I cannot create, I do not understand" (Richard Feynman)

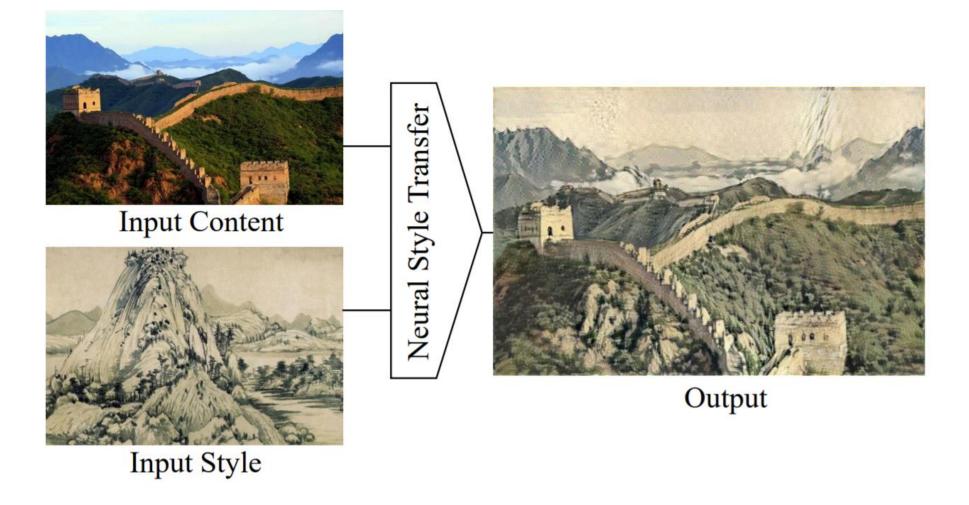
Manipulating Texture



Input Content

A.A.Efros, W.T.Freeman. "Image Quilting for Texture Synthesis and Transfer". SIGGRAPH01

Manipulating Style



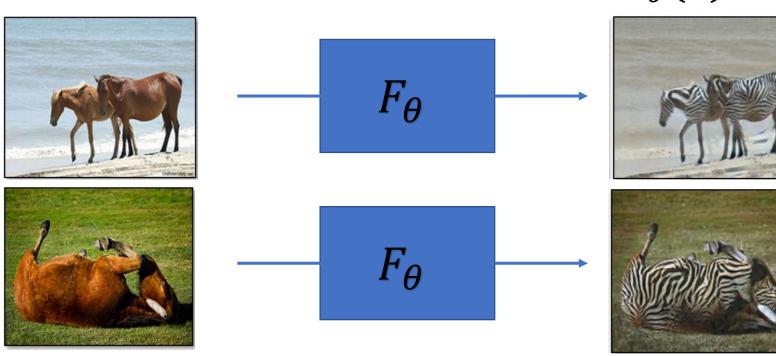
L. A. Gatys, A. S. Ecker, and M. Bethge. "A neural algorithm of artistic style". 2015.

Image to Image Translation

1. $F_{\theta}(x)$ preserves the **structure** of objects of x 2. $F_{\theta}(x)$ belongs to Y's distribution (changes **style**)

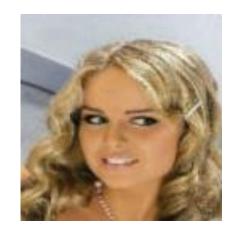
 $F_{\theta}(x) \in Y$

 $x \in X$

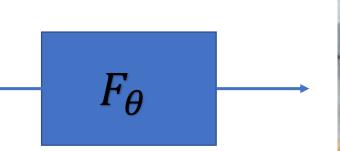


CycleGAN, Zhu et al., ICCV 2017 DistanceGAN, Benaim at al., NeurIPS 2017 MUNIT, Huang et al., ECCV 2018 Many more...

Manipulating Structure



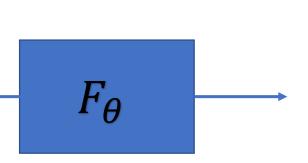
Target



Source Structure

Manipulating Structure

Target



Source Structure

Architecture

Applications

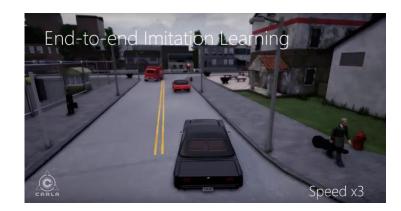
Video games

Movies

Advertising

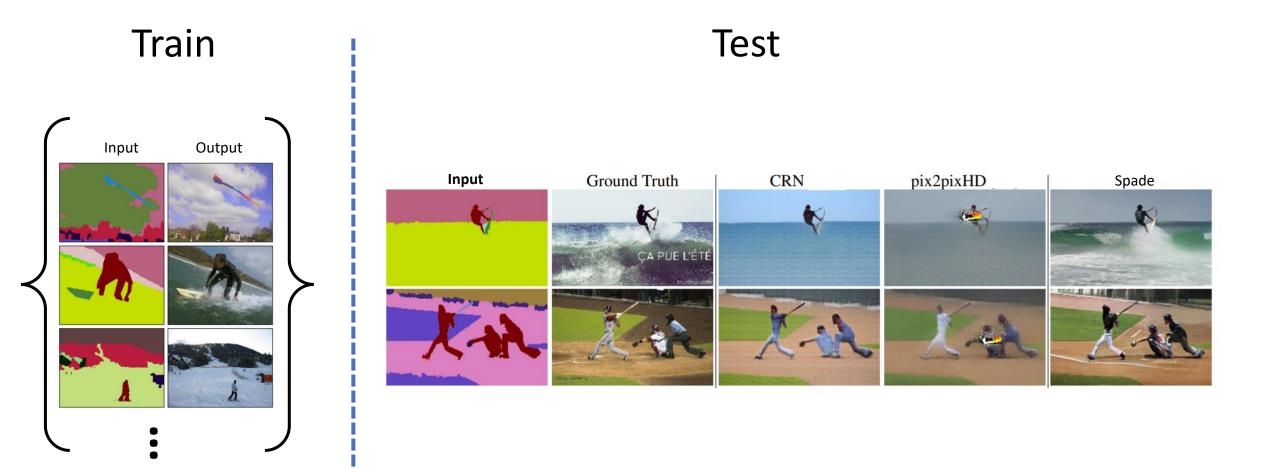
AR/VR

Autonomous Driving Simulations



Multi-Image Approaches

Supervised (Paired) Setting



Unsupervised (Unpaired) Setting

Faces <u>without</u> glasses

Faces with glasses

A

Control Structure of Generated Faces (Transfer Glasses)

Source Glasses

Separate

Domain Intersection and Domain Difference

S. Benaim, M. Khaitov, T. Galanti, L. Wolf. ICCV 2019.

Given two visual domains, disentangle the **separate (domain specific)** information and **common (domain invariant)** information.

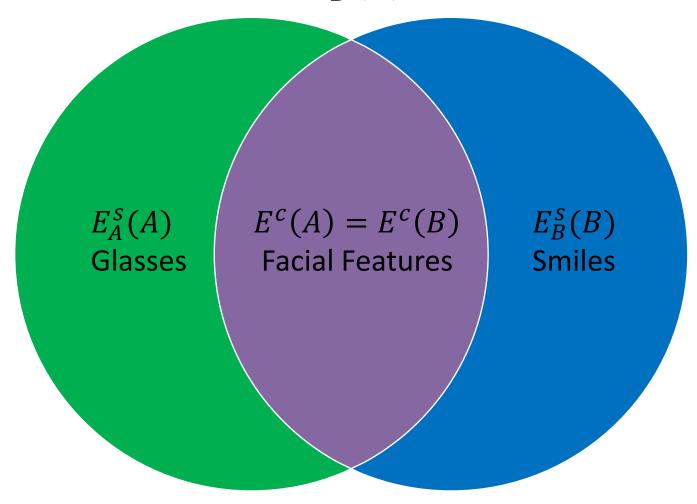
See also: Emerging Disentanglement in Auto-Encoder BasedUnsupervised Image Content Transfer. ICLR 2019. O. Press, T. Galanti, **S. Benaim**, L. Wolf

Unsupervised Content Transfer

Non-smiling faces with glasses

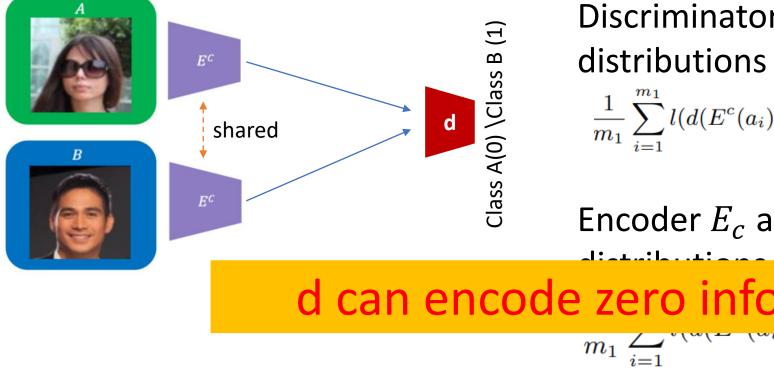
Smiling faces without glasses

- 1. "Common" latent space, $E^{c}(A) = E^{c}(B)$. The space of **common facial features**.
- 2. "Separate" latent space for domain A, $E_A^S(A)$. The **space of glasses**.
- 3. "Separate" latent space for domain B, $E_B^s(B)$. The space of smiles.



The "common" Loss

Ensures E_c encodes information common to both domains



Discriminator d attempts to separate distributions (classify to correct label): $\frac{1}{m_1} \sum_{i=1}^{m_1} l(d(E^c(a_i)), 0) + \frac{1}{m_2} \sum_{i=1}^{m_2} l(d(E^c(b_j)), 1)$

 $E_A^{s}(A)$

Glasses

 $E^{c}(A) = E^{c}(B)$

Facial Features

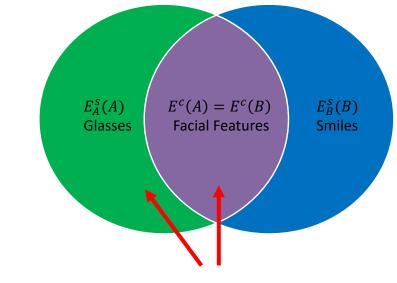
 $E_B^{s}(B)$

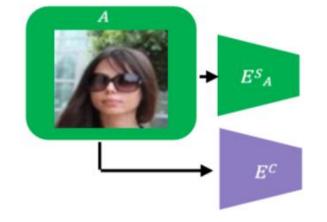
Smiles

Encoder E_c attempts to match distributions of E (4) and E (B): d can encode zero information $m_1 \underset{i=1}{\overset{\circ}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\atopi=1}{\underset{i=1}{\atopi$

Reconstruction Losses

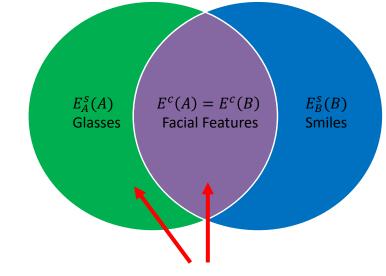
Ensures the "common" and "separate" encodings contain all the information in A



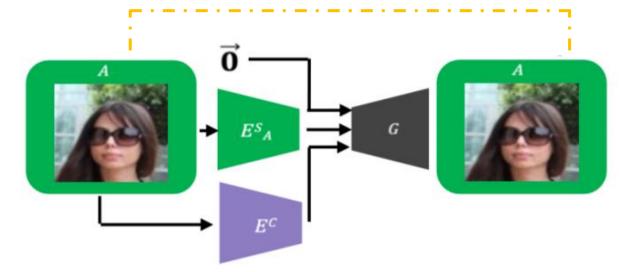


Reconstruction Losses

Ensures the "common" and "separate" encodings contain all the information in A

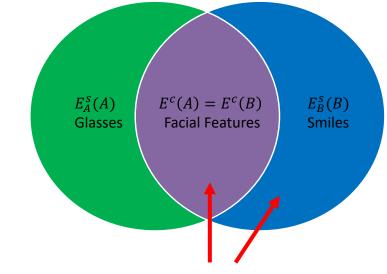


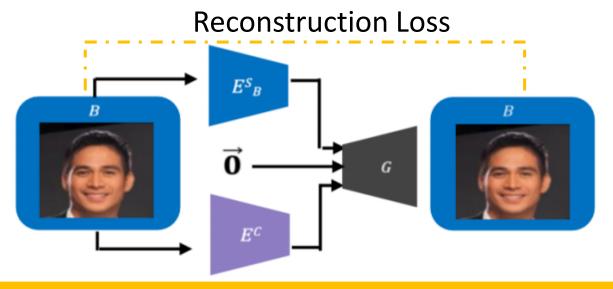
Reconstruction Loss



Reconstruction Losses

Ensures the "common" and "separate" encodings contain all the information in A



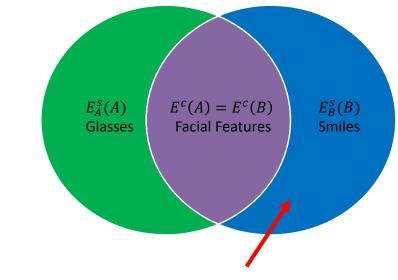


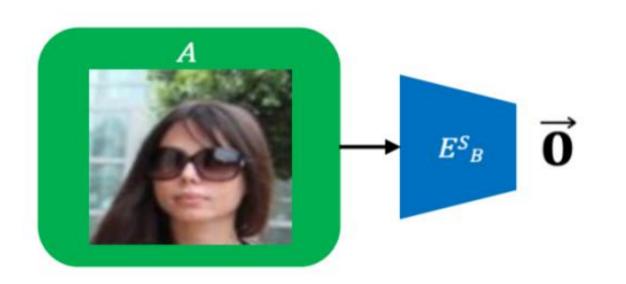
 E_A^S (E_B^S)can encode all the information of A (B)

"Zero" Loss

Ensures the separate encoder of B does not encode information about A

$$\mathcal{L}_{zero}^B := \frac{1}{m_1} \sum_{i=1}^{m_1} \|E_B^s(a_i)\|_1$$

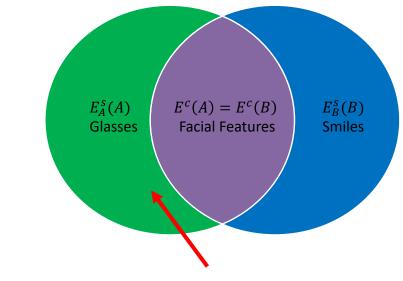


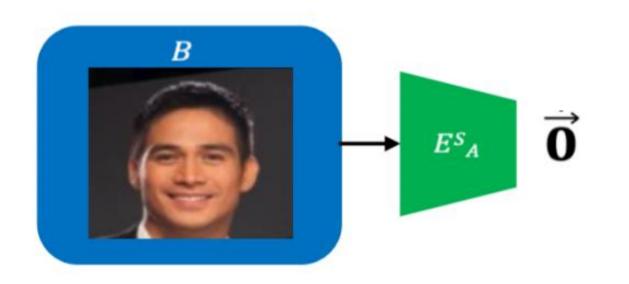


"Zero" Loss

Ensures the separate encoder of B does not encode information about A

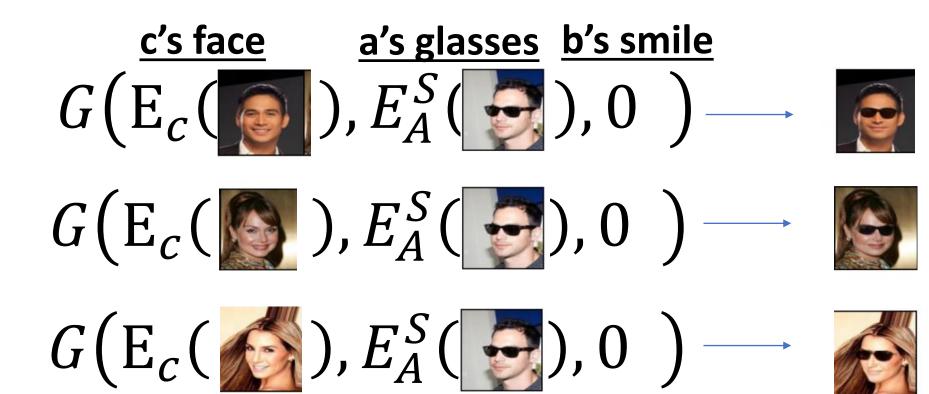
$$\mathcal{L}_{zero}^{A} := \frac{1}{m_2} \sum_{j=1}^{m_2} \| E_A^s(b_j) \|_1$$





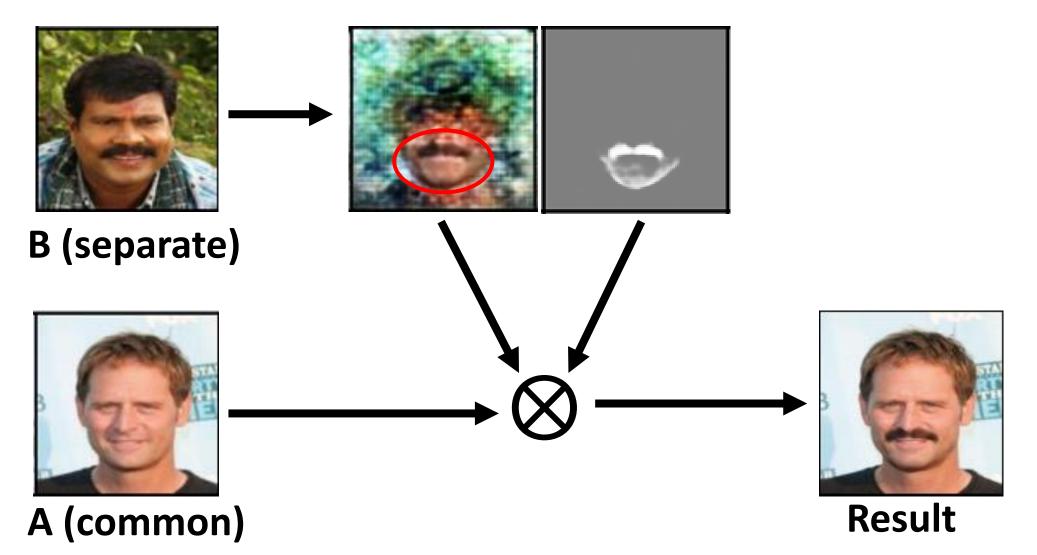
$$G\left(E_{c}(c), E_{A}^{S}(a), E_{B}^{S}(b)\right) \longrightarrow a's \text{ glasses}$$

b's smile



Masked Based Unsupervised Content Transfer

R. Mokady, S. Benaim, L. Wolf, A. Bermano. ICLR 2020.



Common

Separate

Two Attributes

Attribute removal

Result Input

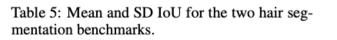
Facial Hair Removal

Input Result

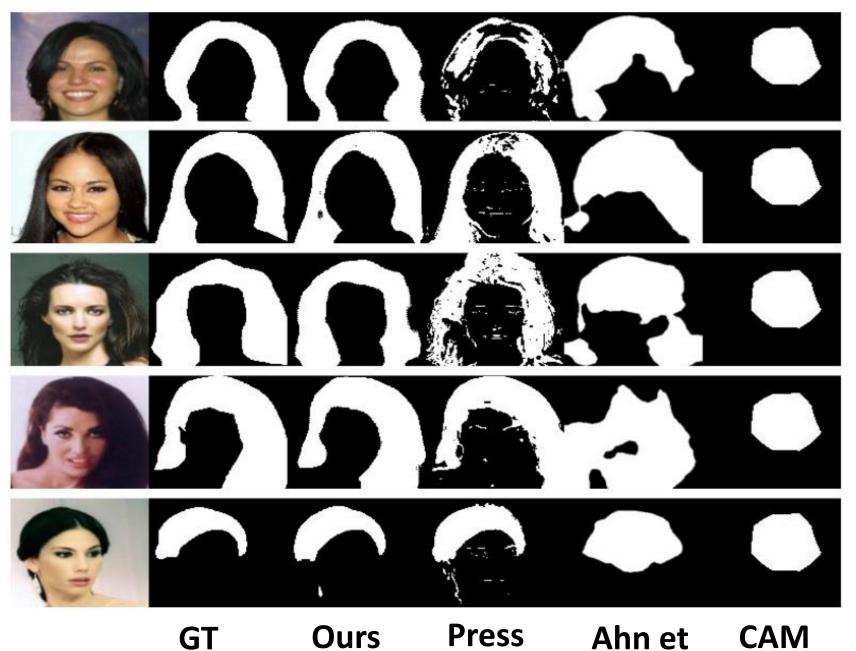
Smile Removal

Out of Domain Manipulation

Weakly-Supervised Segmentation



Method	Women's hair	Men's hair
Ours	0.77 ± 0.15	0.77 ± 0.13
Press et al.	0.67 ± 0.13	0.58 ± 0.11
Ahn & Kwak.	0.54 ± 0.10	0.52 ± 0.10
CAM	$0.43 {\pm}~0.09$	0.56 ± 0.07



et al.

al.

Patch-Based Approaches

Multi-Image Distribution

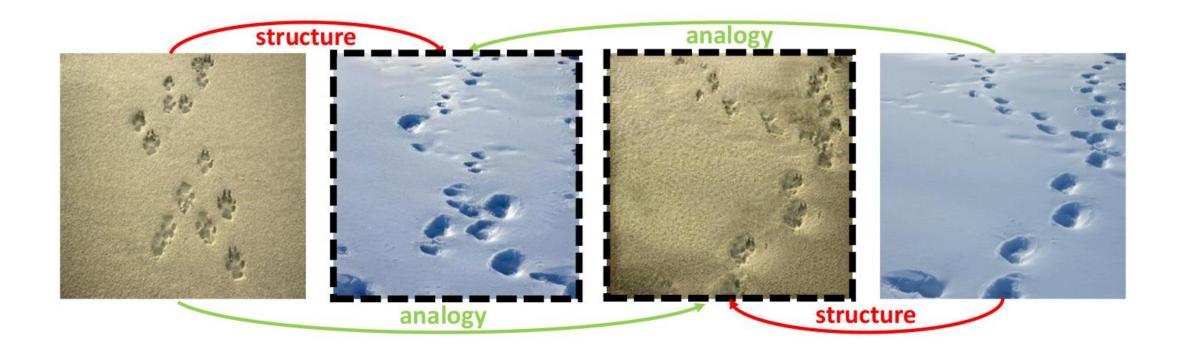
Multi-Scale Patch Distribution

Karras et al., A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

Structural-analogy from a Single Image Pair

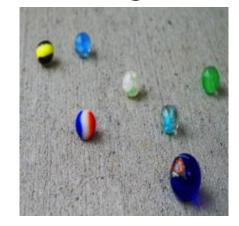
S. Benaim*, R. Mokady*, A. Bermano, D Cohen-Or, L. Wolf. CGF 2020. (*Equal contribution)

Generate an image which is **aligned to the source** image but depicts **structure from a target image**



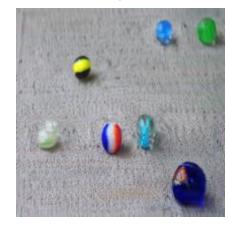
Structural Analogy

Target

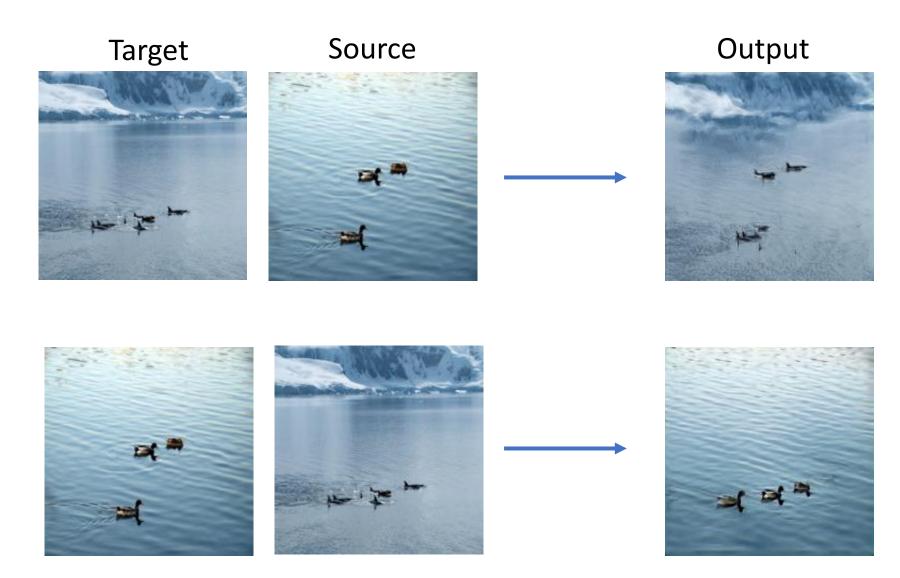


Source

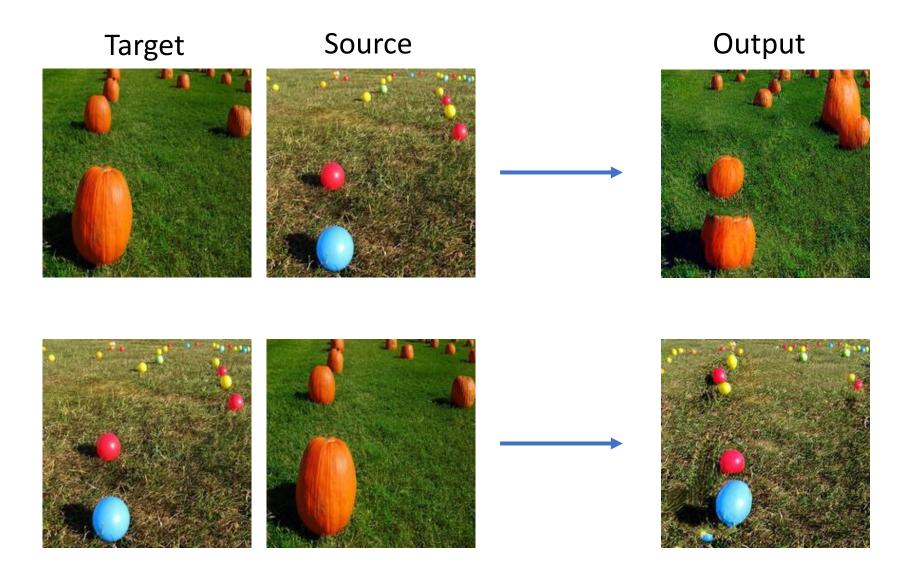
Output



Structural Analogy



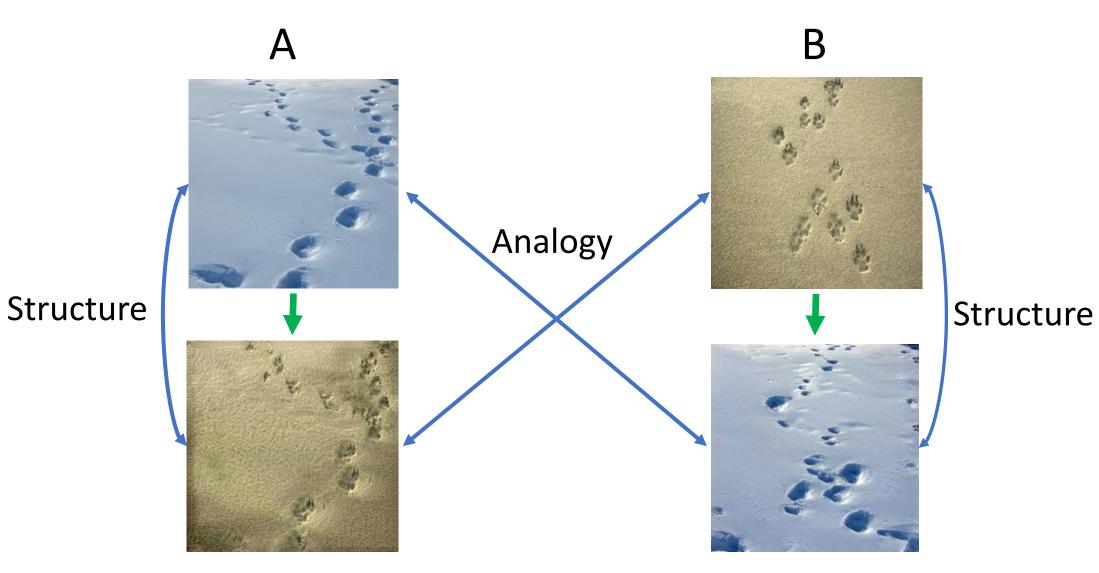
Structural Analogy



Style Transfer Deep Image Analogy Style Style Content Result Result Content

Cannot Change Object Shape

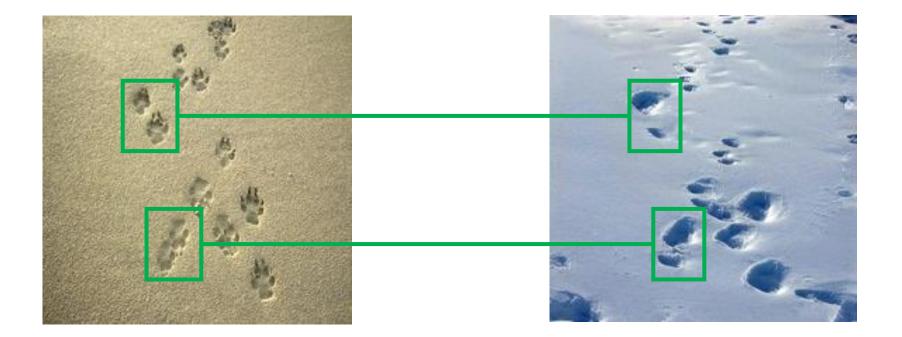
Structural Analogy



Motivation B

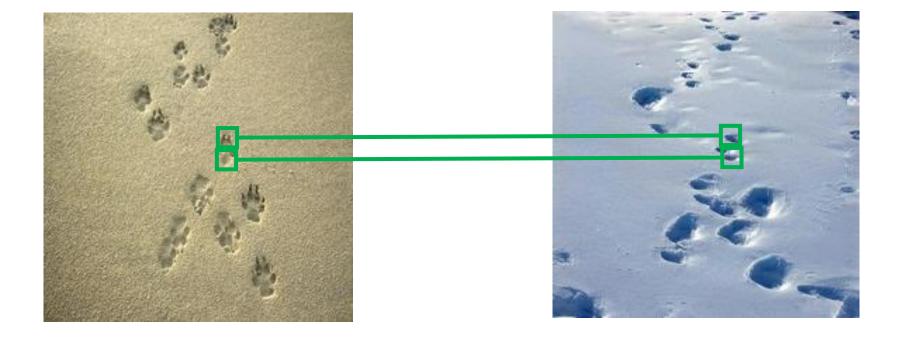
Α

Motivation B



Α

Motivation B



Α

Proposed Hierarchical Approach

Coarsest scale: Large Patches

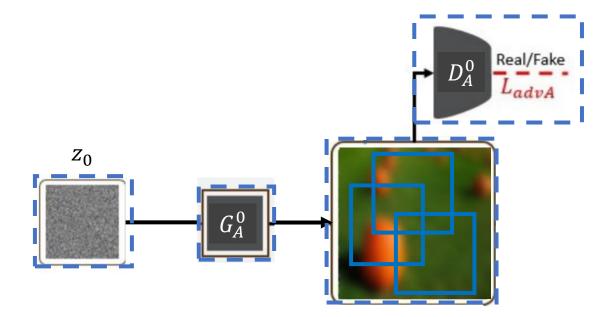
 \overline{a}^{0} (Unconditional) \overline{ab}^{0} (Conditional) Finest scale: Small Patches

 \overline{a}^{N} (Unconditional) \overline{ab}^{N} (Conditional)

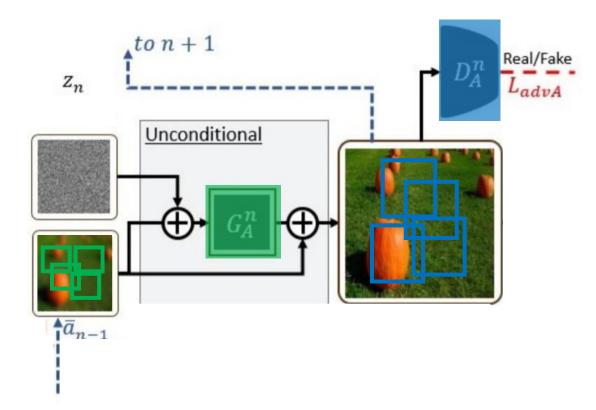
LEVEL = N

LEVEL = 0

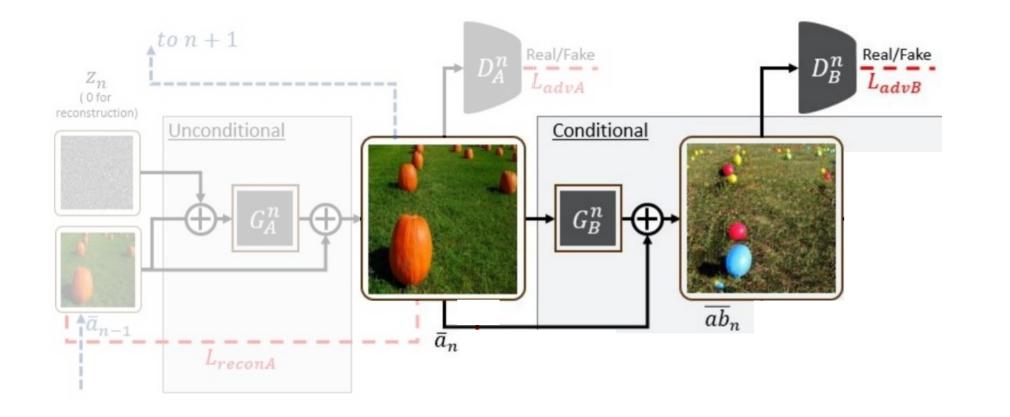
Unconditional Generation (Level 0)



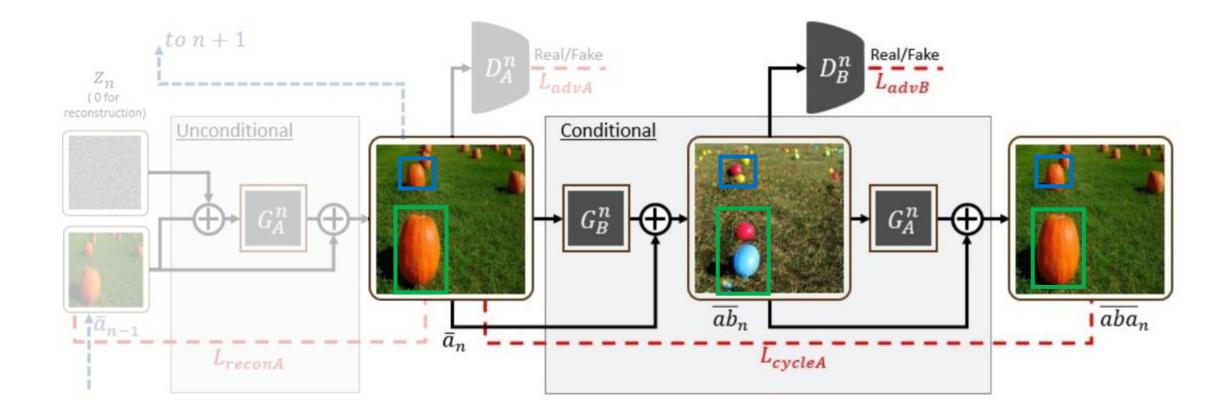
Unconditional Generation (Level n)



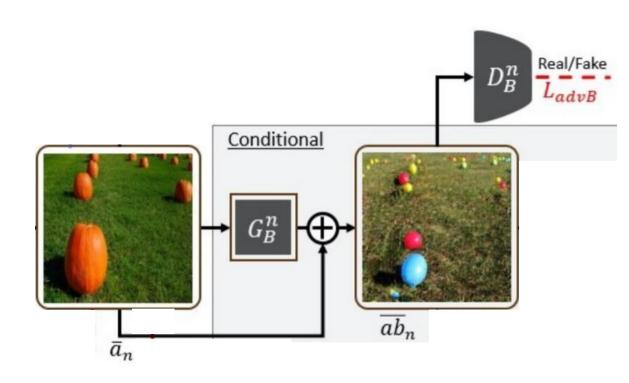
Conditional Generation (Level n)

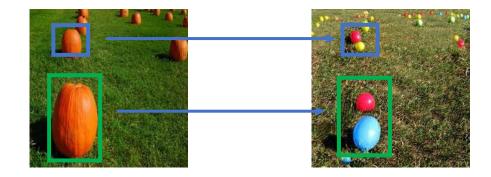


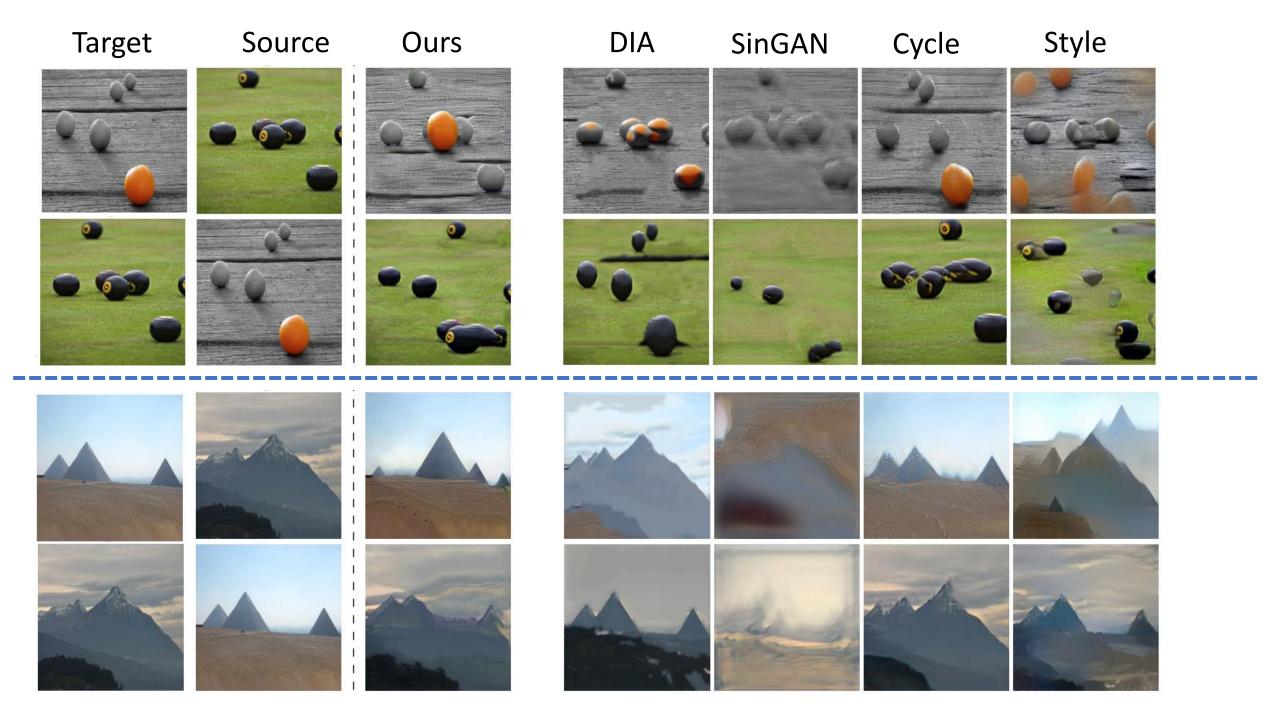
Conditional Generation (Level n)



Coarse and Mid Scales: Residual Training







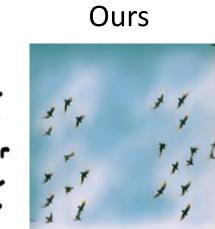
Multiple Class Types

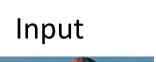
Input

Output

Paint to Image







Video Generation

Structure Manipulation for Videos

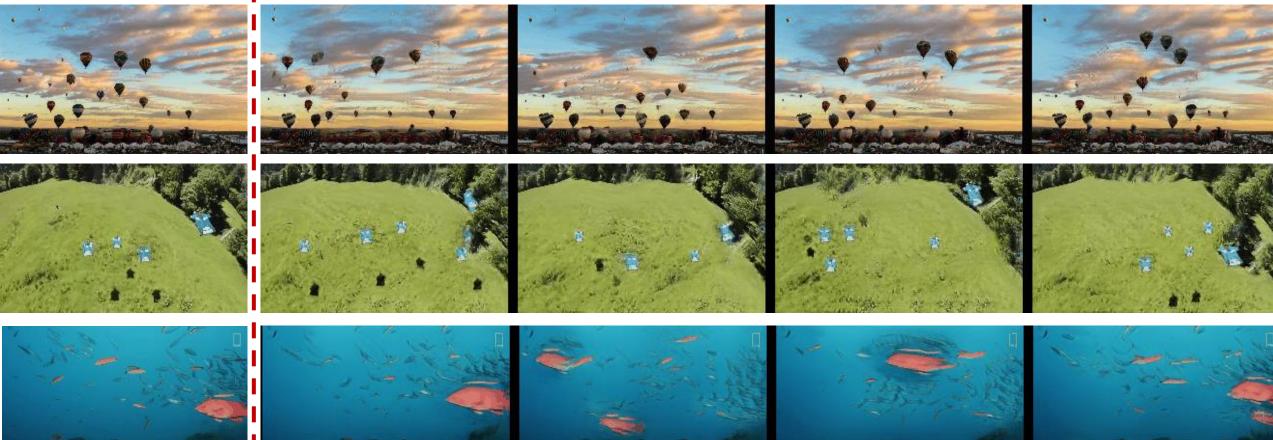
Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample

S. Gur*, S. Benaim*, L. Wolf. NeurIPS 2020 (*Equal contribution)

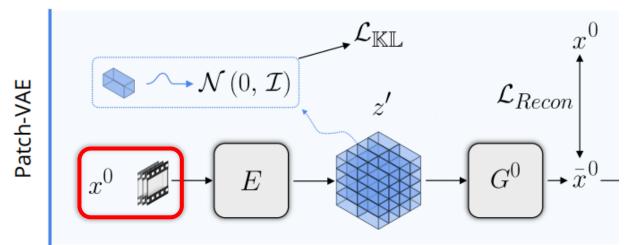
Real

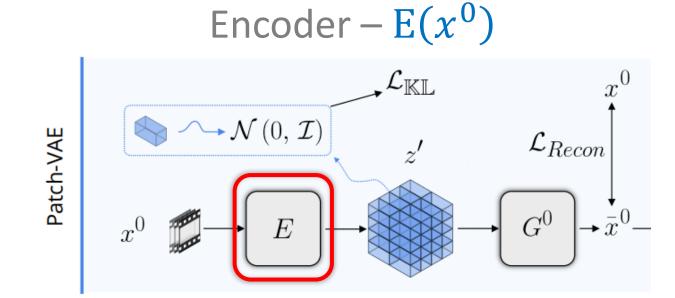
Hierarchical Patch VAE-GAN: Generating Diverse Videos from a Single Sample

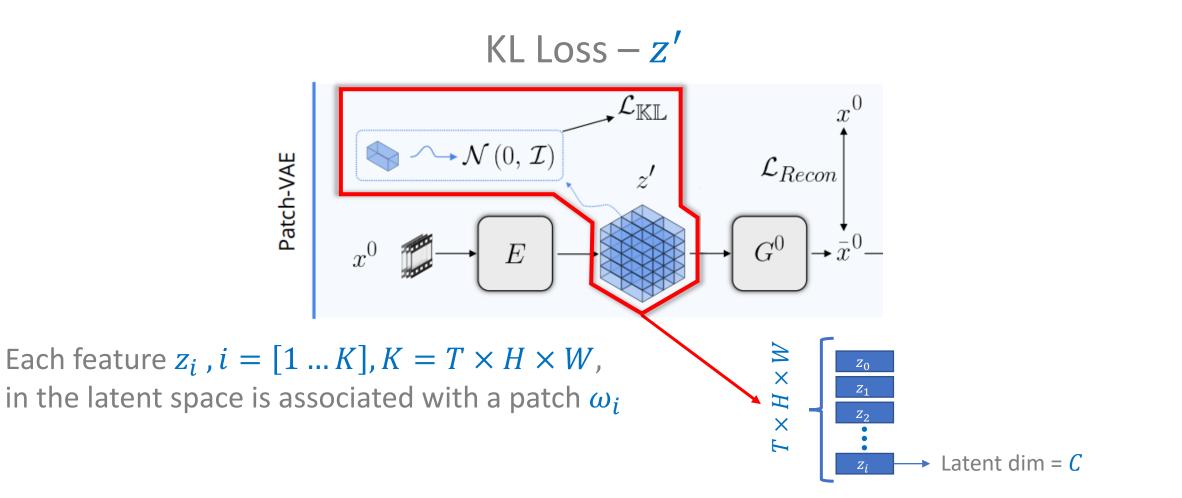
S. Gur*, S. Benaim*, L. Wolf. NeurIPS 2020 (*Equal contribution) Real Generated Samples (13 Frames)

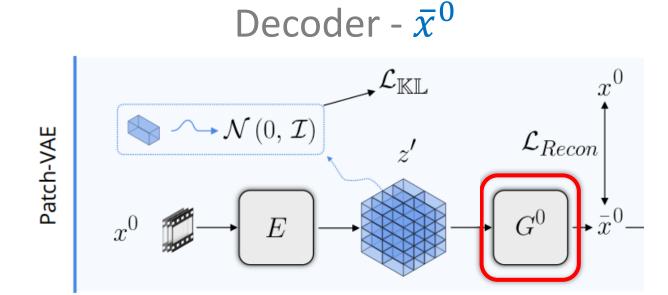


Input video - x^0

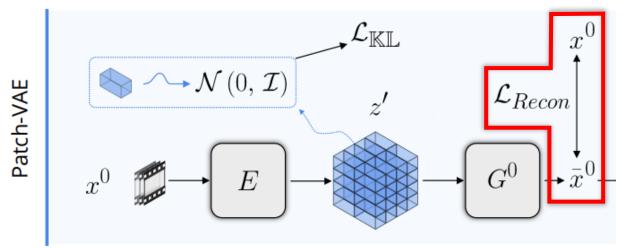








Reconstruction loss



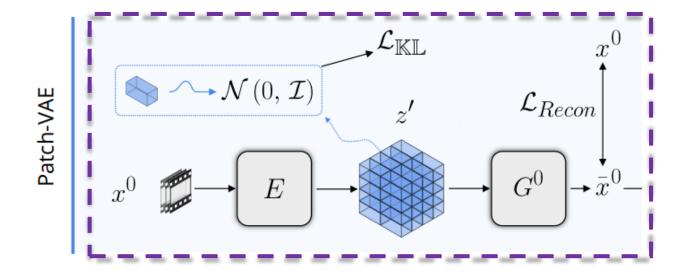
Coarsest scale: Low resolution and frame rate

 x^{0} (Real) \overline{x}^{0} (Generated) Finest scale: High resolution and frame rate

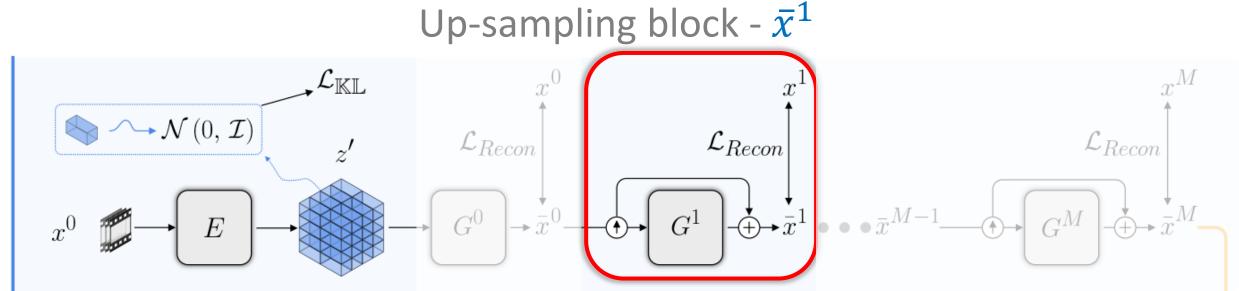
 $\frac{x^{N}}{\bar{x}^{N}}$ (Real) \bar{x}^{N} (Generated)

LEVEL = N

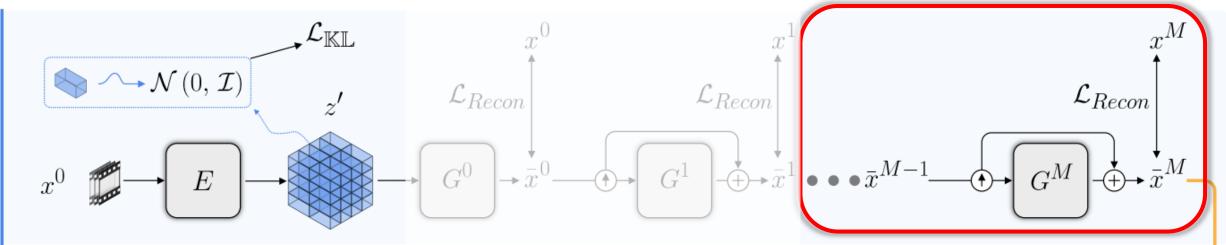
LEVEL = 0



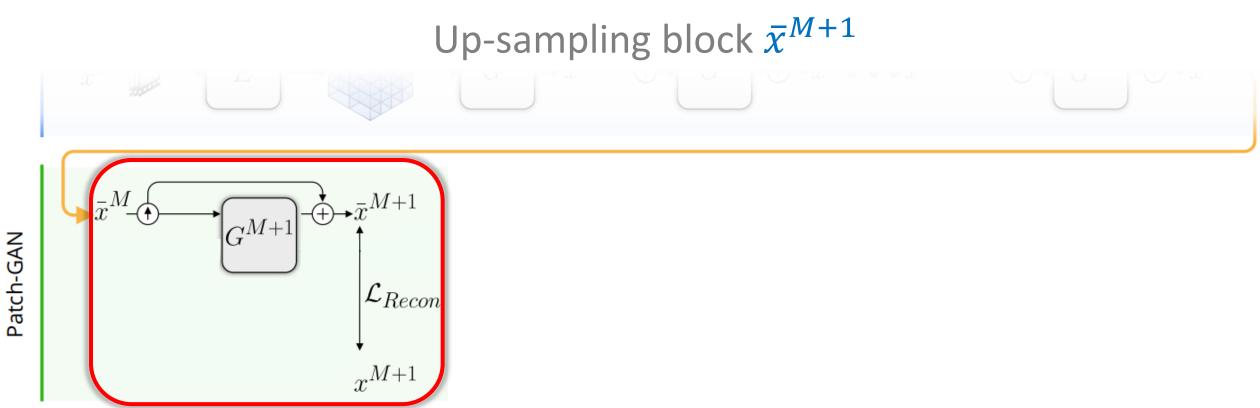
LEVEL = 0



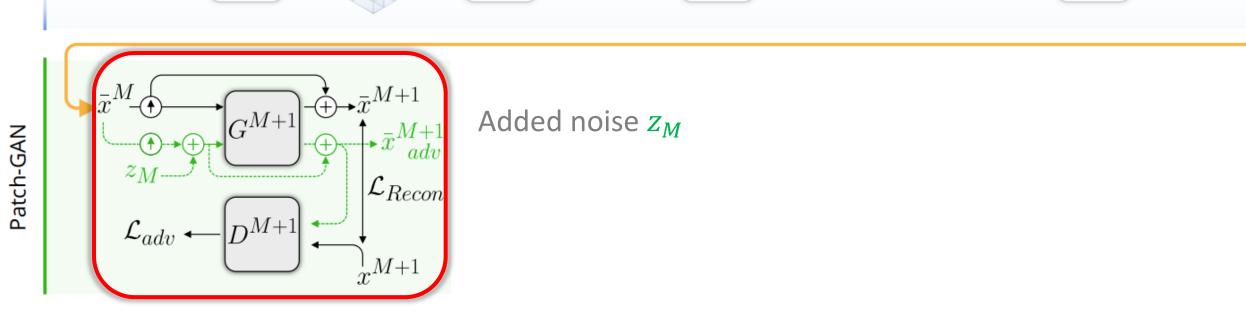
Hierarchical up-sampling up to \bar{x}^M



 $LEVEL \leq M$

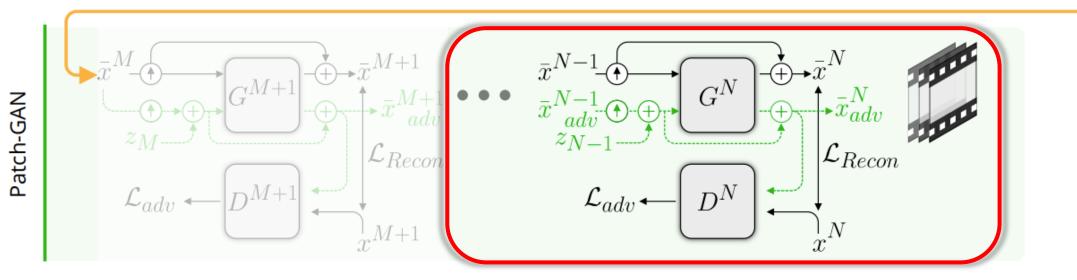


 $\mathsf{LEVEL} = M + 1$



LEVEL = M + 1

Hierarchical up-sampling up to final resolution \bar{x}^N



 $M + 1 < \text{LEVEL} \le N$

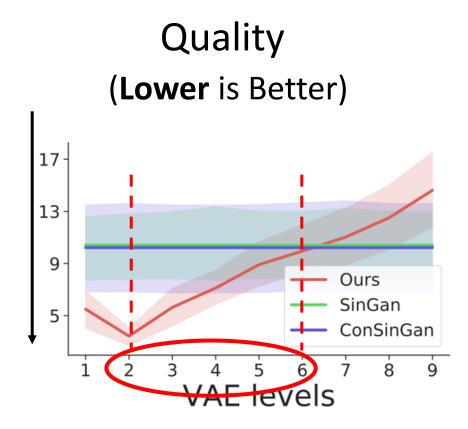
Effect of Number of patch-VAE levels

Training Video

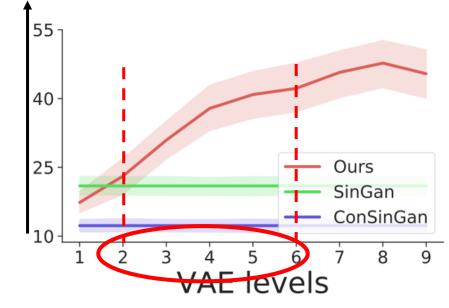
1 p-VAE – 8 p-GAN

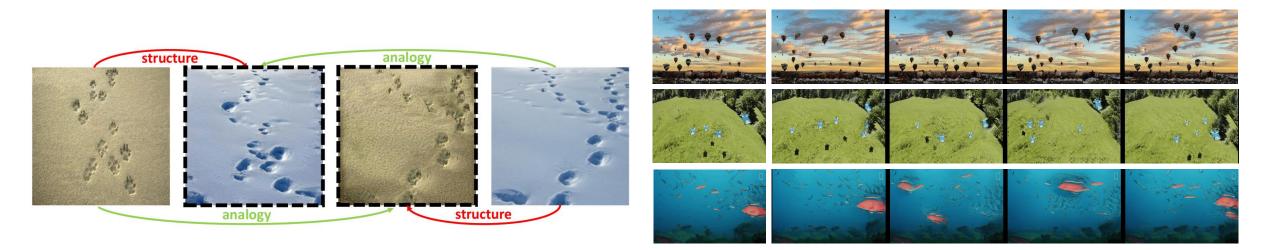
Effect of Number of patch-VAE levels

Total of 9 layers



Diversity (**Higher** is Better)

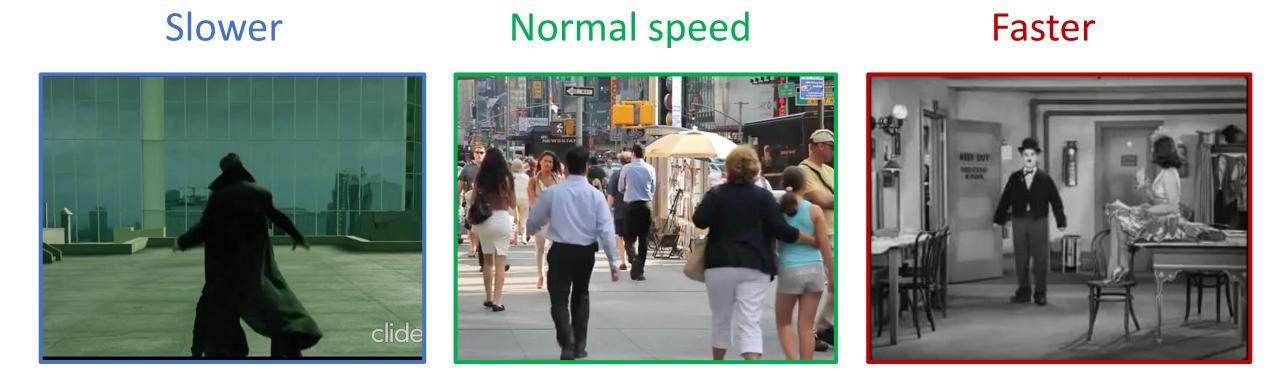




Part II: Waripulating Styleturerstanding Structure

SpeedNet: Learning the Speediness in Videos

S. Benaim, A. Ephrat, O. Lang, I. Mosseri, W. T. Freeman, M. Rubinstein, M. Irani, T. Dekel. CVPR 2020.

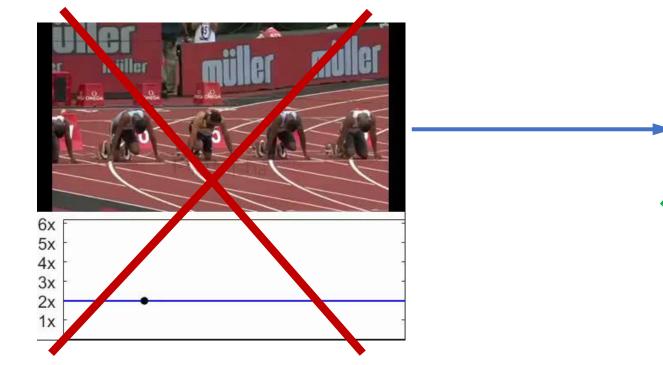


https://speednet-cvpr20.github.io/

Automatically predict "speediness"

Uniform Speed Up (2x)

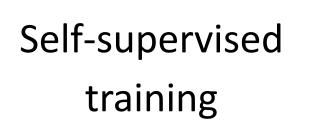
Adaptive speed up (2x)

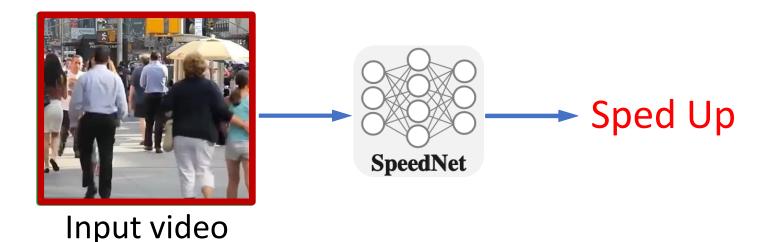


Other Applications:

- Self-supervised action recognition
- Video retrieval

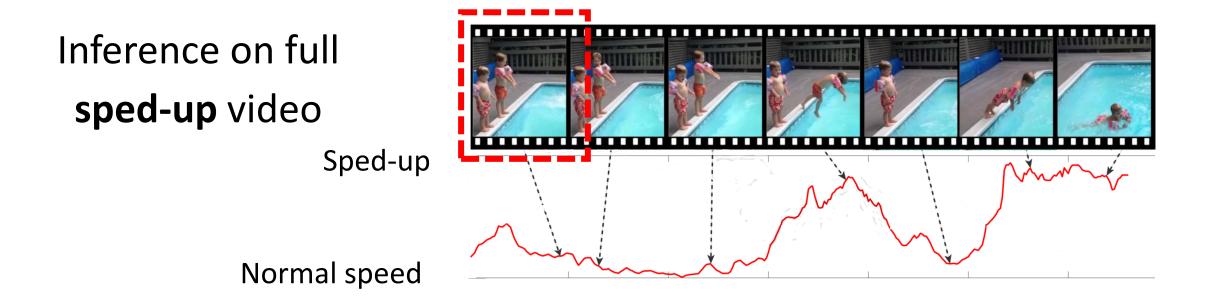
Training SpeedNet

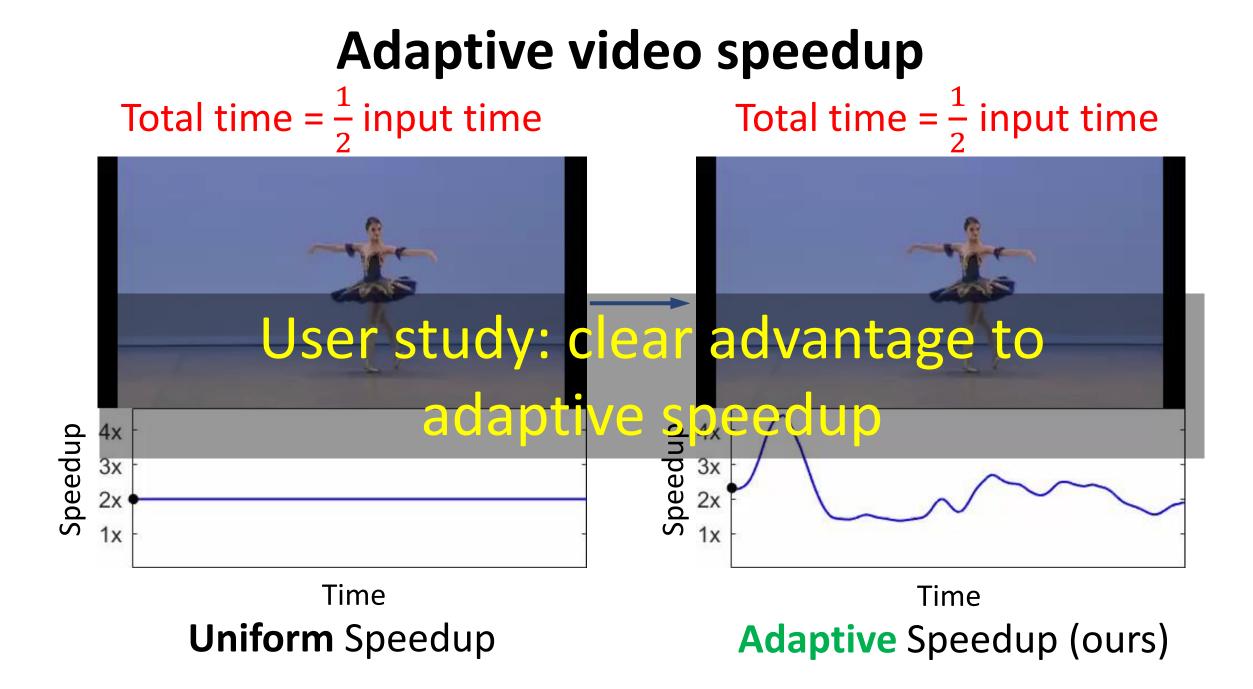




- Spatial augmentations
- Temporal augmentations
- Same-batch training

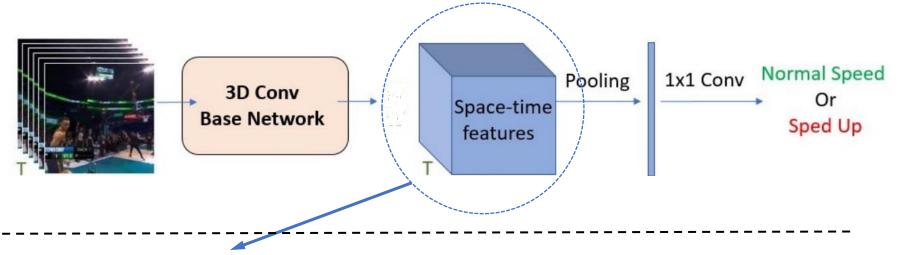
Adaptive video speedup





Other self supervised tasks

Train SpeedNet

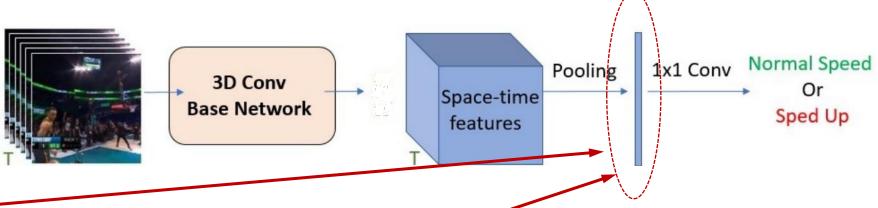


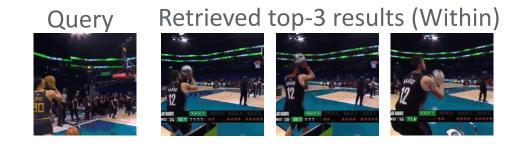
Self Supervised Action Recognition

Initializa	tion	Supervise	ed accuracy
Method	Architecture	UCF101	HMDB51
Random init	S3D-G	73.8	46.4
ImageNet inflated	S3D-G	86.6	57.7
Kinetics supervised	S3D-G	96.8	74.5
CubicPuzzle [19]	3D-ResNet18	65.8	33.7
Order [40]	R(2+1)D	72.4	30.9
DPC [13]	3D-ResNet34	75.7	35.7
AoT [38]	T-CAM	79.4	-
SpeedNet (Ours)	S3D-G	81.1	48.8
Random init	I3D	47.9	29.6
SpeedNet (Ours)	I3D	66.7	43.7

Other self supervised tasks: Video Retrieval

Train SpeedNet





Query

"Memory Eleven": An artistic video by Bill Newsinger: <u>https://www.youtube.com/watch?v=djylSOWi_lo</u>

Spatio-Temporal Visualizations

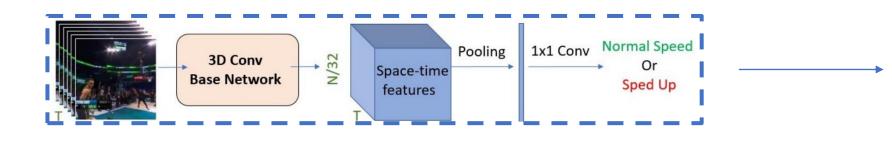
blue/green =
normal speed

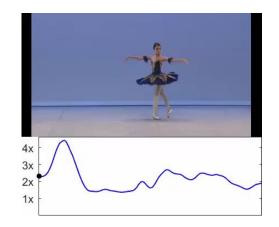
yellow/orange =
slowed down

Part I: Manipulating Structure



Part II: Manipulating by Understanding Structure

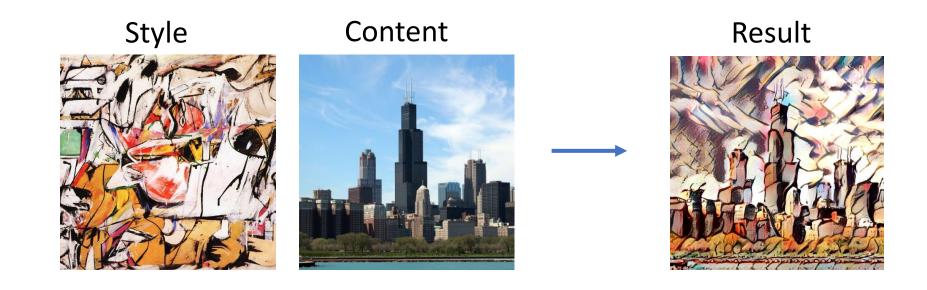




Part III: Structure Preserving Manipulation

Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image Classification

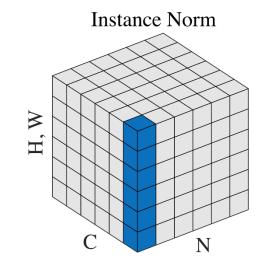
O. Nuriel, S. Benaim, L. Wolf. CVPR 2021.



Structure Preserving Transformation

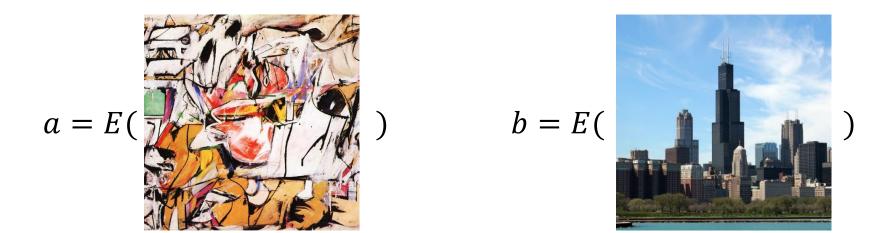
• $a \in \mathbb{R}^{C \times H \times W}$ and $b \in \mathbb{R}^{C \times H \times W}$ be the activations of some encoder E applied on images I_a and I_b respectively.

Instance Normalization



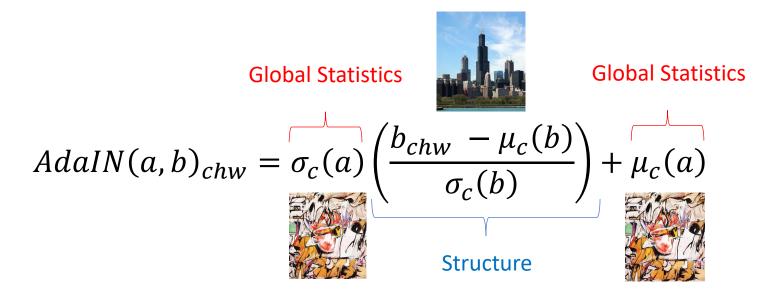
$$IN(b)_{chw} = \left(\frac{b_{chw} - \mu_c(b)}{\sigma_c(b)}\right)$$

Adaptive Instance Normalization



$$AdaIN(a,b)_{chw} = \sigma_c(a) \left(\frac{b_{chw} - \mu_c(b)}{\sigma_c(b)} \right) + \mu_c(a)$$

Adaptive Instance Normalization

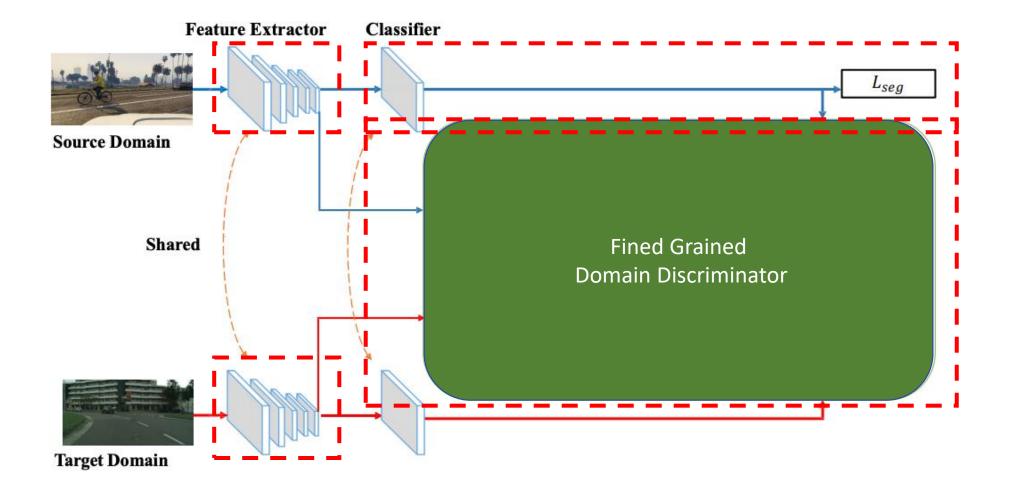


- AdalN swaps the global statistics of a to those of b
- μ and σ represent the **global statistics** of an image (such as brightness, contrast, lighting, global color changes and global texture)
- Structure represents information relating to shape of objects

Supervised training on source domain and unsupervised on target domain

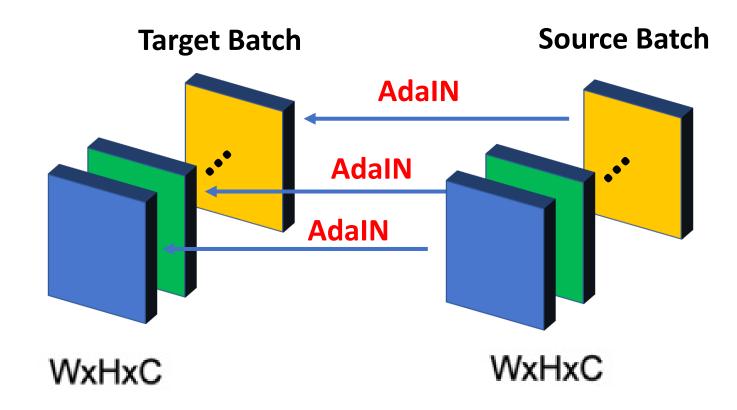
Source: GTAV

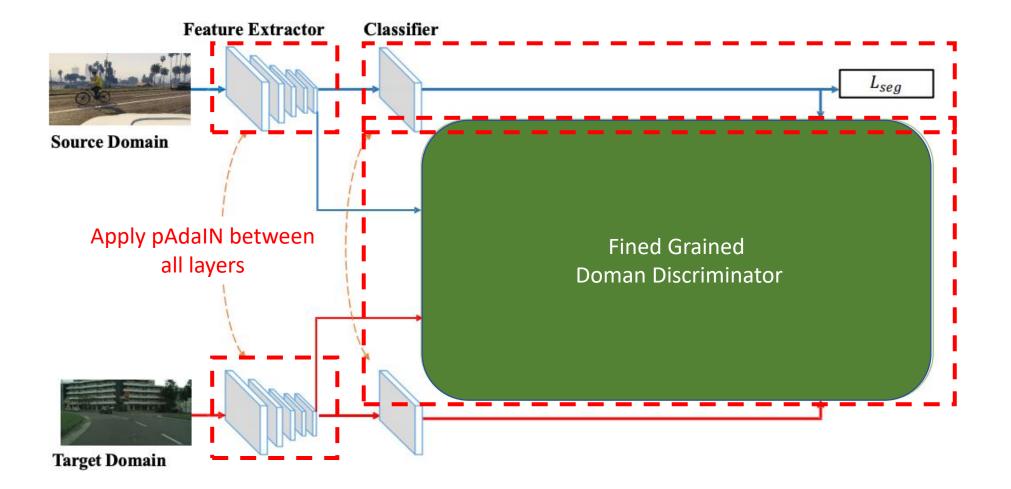
Target: Cityscapes



Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation. Wang et al., ECCV 2020.

- Swap global statistics of target features with those of source features by applying AdaIN with probability p.
- Apply at every layer of the feature extractor.





Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation. Wang et al., ECCV 2020.

GTAV to Cityscapes

AdaptSegNet [35]	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
SIBAN [28]	88.5	35.4	79.5	26.3	24.3	28.5	32.5	18.3	81.2	40.0	76.5	58.1	25.8	82.6	30.3	34.4	3.4	21.6	21.5	42.6
CLAN [29]	87.0	27.1	79.6	27.3	23.3	28.3	35.5	24.2	83.6	27.4	74.2	58.6	28.0	76.2	33.1	36.7	6.7	31.9	31.4	43.2
AdaptPatch [36]	92.3	51.9	82.1	29.2	25.1	24.5	33.8	33.0	82.4	32.8	82.2	58.6	27.2	84.3	33.4	46.3	2.2	29.5	32.3	46.5
ADVENT [38]	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5
FADA [40]	92.5	47.5	85.1	37.6	32.8	33.4	33.8	18.4	85.3	37.7	83.5	63.2	39.7	87.5	32.9	47.8	1.6	34.9	39.5	49.2
FADA [40] + pAdaIN	93.3	55.7	85.6	38.3	29.6	31.2	34.2	17.8	86.2	41.0	88.8	65.1	37.1	87.6	45.9	55.1	15.1	39.4	31.1	51.5

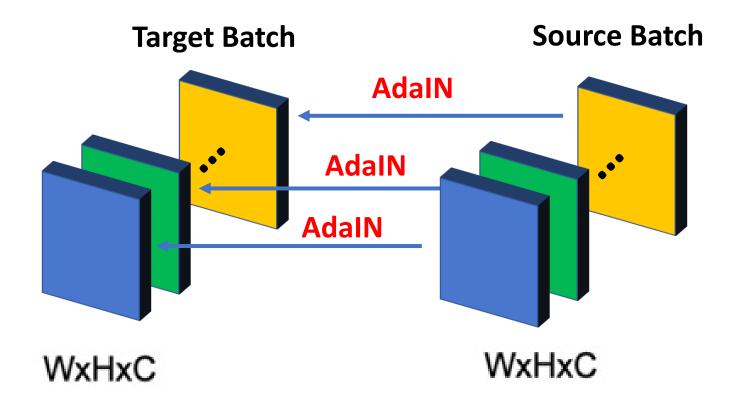


Image Classification

Swap global statistics between every two elements in the batch

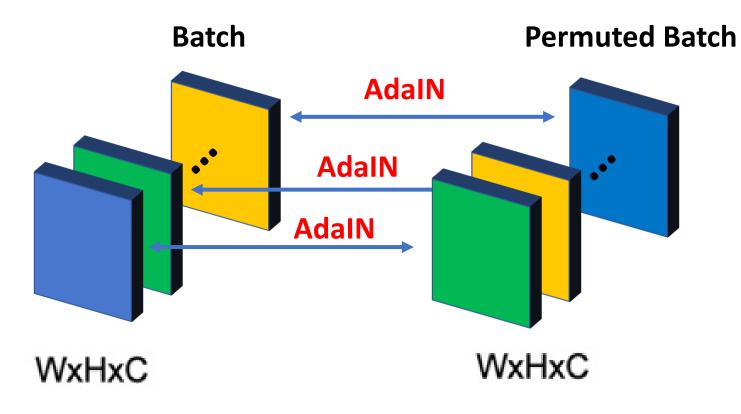


Image Classification

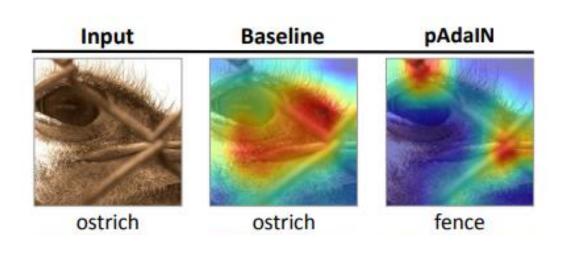
ImageNet

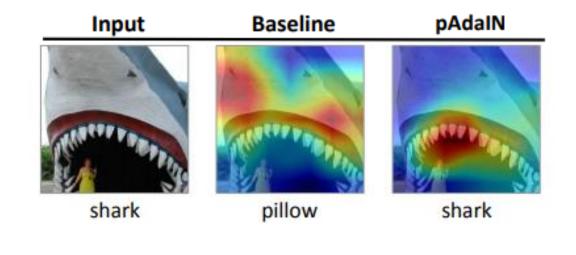
Method	Architecture	Top-1 Accuracy	Top-5 Accuracy
Baseline	ResNet50	77.1	93.63
pAdaIN	ResNet50	77.7	93.93
Baseline	ResNet101	78.13	93.71
pAdaIN	ResNet101	78.8	94.35
Baseline	ResNet152	78.31	94.06
pAdaIN	ResNet152	79.13	94.64

Cifar100

Method	Architecture	CIFAR 100
Baseline	PyramidNet	83.49
pAdaIN	PyramidNet	84.17
Baseline	ResNet18	76.13
pAdaIN	ResNet18	77.82
Baseline	ResNet50	78.22
pAdaIN	ResNet50	79.03

Image Classification





Robustness Towards Corruption

ImageNet-C Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur Motion Blur Zoom Blur Snow Frost Fog Brightness Elastic Pixelate Contrast JPEG

Robustness Towards Corruption

CIFAR100-C

	Baseline	Cutout [8]	Mixup [43]	CutMix [43]	Auto- Augment [7]	Adversarial Training [30]	Augmix [<mark>18</mark>]	pAdaIN+ Augmix
DenseNet-BC	59.3	59.6	55.4	59.2	53.9	55.2	38.9	37.5
ResNext-29	53.4	54.6	51.4	54.1	51.3	54.4	34.4	31.6

Category Wise Breakdown

Dataset Network	Architecture	Ε	mCE		Noise		Blur				Weather				Digital			
				Gauss.	Shot 1	mpulse	Defocus	Glass	Motion	Zoom	Snow	Frost	Fog	Bright	Contrast	Elastic	Pixel	JPEG
INet-C Baseline	ResNet50	22.9	76.7	80	82	83	75	89	78	80	78	75	66	57	71	85	77	77
INet-C pAdaIN	ResNet50	22.3	72.8	78	79	81	70	87	74	76	74	71	64	55	65	82	66	71
C100-C Augmix [18]	DenseNet-BC	24.2	38.9	60	51	41	27	55	31	29	36	39	35	28	37	33	39	41
C100-C Augmix+pAdaIN	DenseNet-BC	22.2	37.5	58	49	40	26	54	30	28	35	38	33	25	36	32	37	40
C100-C Augmix [18]	ResNext-29	21.0	34.4	56	48	32	23	49	27	25	32	35	32	24	32	30	34	37
C100-C Augmix+pAdaIN	ResNext-29	17.3	31.6	58	48	24	20	54	23	21	28	30	25	19	27	27	33	36

Manipulating Structure

- Multi-sample approaches
- Structural analogies
- Novel videos of similar structure

Manipulating by Understanding Structure

 Speed up videos "gracefully" using "speed" as supervision

Structure Preserving Manipulation

• Image classification and domain adaptation

Structure is Key to Image Understanding

Demonstrate using **Structure Aware Manipulation**

Next?

- 3D-aware structure manipulation
- Manipulating multiple objects in videos
- Functional relationships: A person riding a bike vs a person beside a bike

Thank You! Questions?