# Manipulating Structure in Images and Videos

#### Sagie Benaim

School of Computer Science, Tel Aviv University



## What is a natural image?



### Texture







## Style





L. A. Gatys, A. S. Ecker, and M. Bethge, "A neural algorithm of artistic style". 2015.

#### Structure





## Manipulating Texture



A.A.Efros, W.T.Freeman; "Image Quilting for Texture Synthesis and Transfer"; SIGGRAPH01

## Manipulating Style



L. A. Gatys, A. S. Ecker, and M. Bethge, "A neural algorithm of artistic style". 2015.

### Image to Image Translation

- 1.  $F_{\theta}(x)$  preserves the **structure** of objects of x
- 2.  $F_{\theta}(x)$  belongs to Y's distribution (changes **style**)



## Manipulating Structure



Source Structure

## Manipulating Structure



## Supervised (Paired) Setting

Train Test





## Unsupervised (Unpaired) Setting



Faces without glasses



Faces with glasses

## Control Structure of Generated Faces (Transfer Glasses)

#### Common



**Separate** 

## Multimodal Image to Image Translation



## Multimodal Image to Image Translation



#### Domain Intersection and Domain Difference

S. Benaim, M. Khaitov, T. Galanti, L. Wolf. ICCV 2019.

Given two visual domains, disentangle the separate (domain specific) information and common (domain invariant) information.

## Unsupervised Content Transfer



Non-smiling faces with glasses



Smiling faces without glasses

- 1. "Common" latent space,  $E^c(A) = E^c(B)$ . The space of **common facial features**
- 2. "Separate" latent space for domain A,  $E_A^S(A)$ . The space of glasses.
- 3. "Separate" latent space for domain B,  $E_B^s(B)$ . The space of smiles.



#### The "common" Loss

#### Ensures $E_c$ encodes information common to both domains





Discriminator d attempts to separate distributions (classify to correct label):

$$\frac{1}{m_1} \sum_{i=1}^{m_1} l(d(E^c(a_i)), 0) + \frac{1}{m_2} \sum_{j=1}^{m_2} l(d(E^c(b_j)), 1)$$

Encoder  $E_c$  attempts to match

distributions of 
$$F(A)$$
 and  $F(B)$ 

d can encode zero information

$$m_1 \stackrel{\smile}{\underset{i=1}{\longleftarrow}} (a(2-(a_{ij}), 1) - m_2 \stackrel{\smile}{\underset{j=1}{\longleftarrow}} (a(2-(b_j)), 1)$$

#### Reconstruction Losses

Ensures the "common" and "separate" encodings contain all the information in A





#### Reconstruction Losses

Ensures the "common" and "separate" encodings contain all the information in A







#### Reconstruction Losses

Ensures the "common" and "separate" encodings contain all the information in A





 $E_A^S$  ( $E_B^S$ ) can encode all the information of A (B)

#### "Zero" Loss

## Ensures the separate encoder of B does not encode information about A

$$\mathcal{L}_{zero}^{B} := \frac{1}{m_1} \sum_{i=1}^{m_1} ||E_B^s(a_i)||_1$$





#### "Zero" Loss

## Ensures the separate encoder of B does not encode information about A

$$\mathcal{L}_{zero}^{A} := \frac{1}{m_2} \sum_{j=1}^{m_2} ||E_A^s(b_j)||_1$$





## Training:



Legend:

Domain A

Domain B

$$G\left(\mathrm{E}_{\mathcal{C}}(c), E_A^{\mathcal{S}}(a), E_B^{\mathcal{S}}(b)\right)$$
 a's glasses b's smile

$$\frac{c's \text{ face}}{G\left(\mathrm{E}_{\mathcal{C}}(\square), E_{A}^{S}(\square), 0\right)} \xrightarrow{E_{A}^{S}} \left(\square\right), 0\right) \longrightarrow \mathbb{G}$$

$$G\left(\mathrm{E}_{\mathcal{C}}(\square), E_{A}^{S}(\square), 0\right) \longrightarrow \mathbb{G}$$

$$G\left(\mathrm{E}_{\mathcal{C}}(\square), E_{A}^{S}(\square), 0\right) \longrightarrow \mathbb{G}$$

## Interpolation



## Losses "Necessary" and "Sufficient"

Under mild assumptions (such as our losses being minimized):

- $E^{c}(a)$  and  $E_{A}^{S}(a)$  are independent (Similarly for B).
- $E^c(a)$  and  $E_A^S(a)$  captures the true underlying "common" and "separate" information in a (Similarly for B).
- I.e., our losses are both necessary and sufficient for the desired disentanglement.

## Masked Based Unsupervised Content Transfer

R. Mokady, S. Benaim, L. Wolf, A. Bermano. ICLR 2020.



#### Common



Separate

### Two Attributes



#### Attribute removal



## Out of Domain Manipulation



Weakly-Supervised Segmentation



Table 5: Mean and SD IoU for the two hair segmentation benchmarks.

| Method       | Women's hair    | Men's hair      |
|--------------|-----------------|-----------------|
| Ours         | $0.77 \pm 0.15$ | $0.77 \pm 0.13$ |
| Press et al. | $0.67 \pm 0.13$ | $0.58 \pm 0.11$ |
| Ahn & Kwak.  | $0.54 \pm 0.10$ | $0.52 \pm 0.10$ |
| CAM          | $0.43 \pm 0.09$ | $0.56 \pm 0.07$ |

GT Ours Press Ahn et CAM et al.

## Structural-analogy from a Single Image Pair

S. Benaim\*, R. Mokady\*, A. Bermano, D Cohen-Or, L. Wolf. CGF 2020. (\*Equal contribution)





## Generate an image which is aligned to the source image but depicts structure from a target image



Source Output Target





#### Style Transfer

#### Deep Image Analogy



Cannot Change Object Shape



#### Motivation





#### Motivation



#### Motivation



#### Proposed Hierarchical Approach

Coarsest scale:

Large Patches

Finest scale:

**Small Patches** 

 $\bar{a}^0$  (Unconditional)  $\bar{a}b^0$  (Conditional)

 $\frac{\overline{a}^{N}}{ab}^{N}$  (Conditional)

LEVEL = 0

LEVEL = N

### Unconditional Generation (Level n)



#### Conditional Generation (Level n)



#### Conditional Generation (Level n)



#### Coarse and Mid Scales: Residual Training



#### Coarse and Mid Scales: Residual Training





### Multiple Class Types

Input Output









#### Paired Generation



### Paint to Image



#### Video Generation





# Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image Classification

O. Nuriel, S. Benaim, L. Wolf. Submitted to CVPR 2021.

Reduce bias towards global statistics by swapping the **global statistics** of an image while maintaining its **structure** with probability p, thus improving **image classification tasks**.

#### Adaptive Instance Normalization

- Let  $a \in \mathbb{R}^{C \times H \times W}$  and  $b \in \mathbb{R}^{C \times H \times W}$  be the activations of some encoder E applied on images  $I_a$  and  $I_b$  respectively.
- $\mu_c(a) = \frac{1}{HW} \sum_{h=1}^{H} \sum_{w=1}^{W} a_{chw}$  (similarly for b)
- $\sigma_c(a) = \sqrt{\sum_{h=1}^{H} \sum_{w=1}^{W} (a_{chw} \mu_c(a))^2 + \epsilon}$  (similarly for b)
- $\mu$  and  $\sigma$  are computed along the **spatial dimension** of a.

$$AdaIN(a,b)_{chw} = \sigma_c(b) \left( \frac{a_{chw} - \mu_c(a)}{\sigma_c(a)} \right) + \mu(b)$$

#### Adaptive Instance Normalization

#### **Global Statistics**

#### **Global Statistics**

$$AdaIN(a,b)_{chw} = \sigma_c(b) \left( \frac{a_{chw} - \mu_c(a)}{\sigma_c(a)} \right) + \mu(b)$$
Structure



- $\mu$  and  $\sigma$  represent the **global statistics** of an image (such as brightness, contrast, lighting, global color changes and global texture)
- Structure represents information relating to shape of objects.

Supervised training on source domain and unsupervised on target domain

Source: GTAV



Target: Cityscapes







Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation. Wang et al., ECCV 2020.

- Swap global statistics of target features with those of source features by applying AdaIN with probability p.
- Apply at every layer of the feature extractor.





Classes Matter: A Fine-grained Adversarial Approach to Cross-domain Semantic Segmentation. Wang et al., ECCV 2020.

#### **GTAV** to Cityscapes

| FADA [40] + pAdaIN | 93.3 | 55.7 | 85.6 | 38.3 | 29.6 | 31.2 | 34.2 | 17.8 | 86.2 | 41.0 | 88.8 | 65.1 | 37.1 | 87.6 | 45.9 | 55.1 | 15.1 | 39.4 | 31.1 | 51.5 |
|--------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| FADA [40]          | 92.5 | 47.5 | 85.1 | 37.6 | 32.8 | 33.4 | 33.8 | 18.4 | 85.3 | 37.7 | 83.5 | 63.2 | 39.7 | 87.5 | 32.9 | 47.8 | 1.6  | 34.9 | 39.5 | 49.2 |
| ADVENT [38]        | 89.4 | 33.1 | 81.0 | 26.6 | 26.8 | 27.2 | 33.5 | 24.7 | 83.9 | 36.7 | 78.8 | 58.7 | 30.5 | 84.8 | 38.5 | 44.5 | 1.7  | 31.6 | 32.4 | 45.5 |
| AdaptPatch [36]    | 92.3 | 51.9 | 82.1 | 29.2 | 25.1 | 24.5 | 33.8 | 33.0 | 82.4 | 32.8 | 82.2 | 58.6 | 27.2 | 84.3 | 33.4 | 46.3 | 2.2  | 29.5 | 32.3 | 46.5 |
| CLAN [29]          | 87.0 | 27.1 | 79.6 | 27.3 | 23.3 | 28.3 | 35.5 | 24.2 | 83.6 | 27.4 | 74.2 | 58.6 | 28.0 | 76.2 | 33.1 | 36.7 | 6.7  | 31.9 | 31.4 | 43.2 |
| SIBAN [28]         | 88.5 | 35.4 | 79.5 | 26.3 | 24.3 | 28.5 | 32.5 | 18.3 | 81.2 | 40.0 | 76.5 | 58.1 | 25.8 | 82.6 | 30.3 | 34.4 | 3.4  | 21.6 | 21.5 | 42.6 |
| AdaptSegNet [35]   | 86.5 | 36.0 | 79.9 | 23.4 | 23.3 | 23.9 | 35.2 | 14.8 | 83.4 | 33.3 | 75.6 | 58.5 | 27.6 | 73.7 | 32.5 | 35.4 | 3.9  | 30.1 | 28.1 | 42.4 |



#### Image Classification

Swap global statistics between every two elements in the batch



### Image Classification

#### ImageNet

| Method   | Architecture | Top-1<br>Accuracy | Top-5<br>Accuracy |
|----------|--------------|-------------------|-------------------|
| Baseline | ResNet50     | 77.1              | 93.63             |
| pAdaIN   | ResNet50     | 77.7              | 93.93             |
| Baseline | ResNet101    | 78.13             | 93.71             |
| pAdaIN   | ResNet101    | 78.8              | 94.35             |
| Baseline | ResNet152    | 78.31             | 94.06             |
| pAdaIN   | ResNet152    | 79.13             | 94.64             |

#### Cifar100

| Method   | Architecture | CIFAR 100 |
|----------|--------------|-----------|
| Baseline | PyramidNet   | 83.49     |
| pAdaIN   | PyramidNet   | 84.17     |
| Baseline | ResNet18     | 76.13     |
| pAdaIN   | ResNet18     | 77.82     |
| Baseline | ResNet50     | 78.22     |
| pAdaIN   | ResNet50     | 79.03     |

#### Robustness Towards Corruption

#### ImageNet-C



#### Robustness Towards Corruption

CIFAR100-C

|             | Baseline | Cutout [8] | Mixup [43] | CutMix [43] | Auto-<br>Augment [7] | Adversarial<br>Training [30] | Augmix [18] | pAdaIN+<br>Augmix |
|-------------|----------|------------|------------|-------------|----------------------|------------------------------|-------------|-------------------|
| DenseNet-BC | 59.3     | 59.6       | 55.4       | 59.2        | 53.9                 | 55.2                         | 38.9        | 37.5              |
| ResNext-29  | 53.4     | 54.6       | 51.4       | 54.1        | 51.3                 | 54.4                         | 34.4        | 31.6              |

#### Category Wise Breakdown

| Dataset Network      | Architecture | Е    | mCE  | Noise     |           | Blur    |           |       |        | Weather   |      |       |     | Digital |          |         |       |      |
|----------------------|--------------|------|------|-----------|-----------|---------|-----------|-------|--------|-----------|------|-------|-----|---------|----------|---------|-------|------|
|                      |              |      |      | Gauss     | . Shot    | Impulse | e Defocus | Glass | Motion | Zoom      | Snow | Frost | Fog | Bright  | Contrast | Elastic | Pixel | JPEG |
| INet-C Baseline      | ResNet50     | 22.9 | 76.7 | 80        | 82        | 83      | 75        | 89    | 78     | 80        | 78   | 75    | 66  | 57      | 71       | 85      | 77    | 77   |
| INet-C pAdaIN        | ResNet50     | 22.3 | 72.8 | <b>78</b> | <b>79</b> | 81      | 70        | 87    | 74     | <b>76</b> | 74   | 71    | 64  | 55      | 65       | 82      | 66    | 71   |
| C100-C Augmix [18]   | DenseNet-BC  | 24.2 | 38.9 | 60        | 51        | 41      | 27        | 55    | 31     | 29        | 36   | 39    | 35  | 28      | 37       | 33      | 39    | 41   |
| C100-C Augmix+pAdaIN | DenseNet-BC  | 22.2 | 37.5 | 58        | 49        | 40      | 26        | 54    | 30     | 28        | 35   | 38    | 33  | 25      | 36       | 32      | 37    | 40   |
| C100-C Augmix [18]   | ResNext-29   | 21.0 | 34.4 | 56        | 48        | 32      | 23        | 49    | 27     | 25        | 32   | 35    | 32  | 24      | 32       | 30      | 34    | 37   |
| C100-C Augmix+pAdaIN | ResNext-29   | 17.3 | 31.6 | 58        | 48        | 24      | 20        | 54    | 23     | 21        | 28   | 30    | 25  | 19      | 27       | 27      | 33    | 36   |

Videos?

#### Hierarchical Patch VAE-GAN: Generating Diverse Videos from a **Single Sample**

S. Gur\*, S. Benaim\*, L. Wolf. NeurIPS 2020 (\*Equal contribution)

#### Real





13-Frames

#### Hierarchical Patch VAE-GAN:

#### Generating Diverse Videos from a Single Sample

S. Gur\*, S. Benaim\*, L. Wolf. NeurIPS 2020 (\*Equal contribution)



#### Extending 2D to 3D

Real Ours Real SinGAN [1] + 3D Convolution Real ConSinGAN [2] + 3D Convolution

<sup>[1] &</sup>quot;SinGAN: Learning a Generative Model from a Single Natural Image", Shaham et al., ICCV 2019 [2] "Improved Techniques for Training Single-Image GANs", Hinz et al., arXiv 2020















#### Reconstruction loss



Coarsest scale: Low resolution and frame rate

 $x^0$  (Real)  $\bar{x}^0$  (Generated)

LEVEL = 0

Finest scale:
High resolution
and frame rate

 $x^N$  (Real)  $\bar{x}^N$  (Generated)

LEVEL = N



Up-sampling block -  $\bar{x}^1$ 



Hierarchical up-sampling up to  $\bar{x}^M$ 



Up-sampling block  $\bar{x}^{M+1}$ 



Adversarial training



Hierarchical up-sampling up to final resolution  $\bar{x}^N$ 



#### Effect of Number of patch-VAE levels

**Training Video** 



9 Levels Total

**1** p-VAE – **8** p-GAN



8 p-VAE - 1 p-GAN



3 p-VAE - 6 p-GAN



#### Effect of Number of patch-VAE levels

#### Total of 9 layers





#### SpeedNet: Learning the Speediness in Videos

**S. Benaim**, A. Ephrat, O. Lang, I. Mosseri, W. T. Freeman, M. Rubinstein, M. Irani, T. Dekel. CVPR 2020.

#### Slower



Normal speed



Faster



### Automatically predict "speediness"

**Uniform** Speed Up (2x)

Adaptive speed up (2x)



**Other Applications:** 

- Self-supervised action recognition
- Video retrieval

### **SpeedNet**

Self-supervised training



Inference on full **sped-up** video

Sped-up

Normal speed

#### Adaptive video speedup



## Other self supervised tasks

Train SpeedNet



#### **Self Supervised Action Recognition**

| Initialization      |              | Supervised accuracy |        |
|---------------------|--------------|---------------------|--------|
| Method              | Architecture | UCF101              | HMDB51 |
| Random init         | S3D-G        | 73.8                | 46.4   |
| ImageNet inflated   | S3D-G        | 86.6                | 57.7   |
| Kinetics supervised | S3D-G        | 96.8                | 74.5   |
| CubicPuzzle [19]    | 3D-ResNet18  | 65.8                | 33.7   |
| Order [40]          | R(2+1)D      | 72.4                | 30.9   |
| DPC [13]            | 3D-ResNet34  | 75.7                | 35.7   |
| AoT [38]            | T-CAM        | 79.4                |        |
| SpeedNet (Ours)     | S3D-G        | 81.1                | 48.8   |
| Random init         | I3D          | 47.9                | 29.6   |
| SpeedNet (Ours)     | I3D          | 66.7                | 43.7   |

# Other self supervised tasks: Video Retrieval

Train SpeedNet





Retrieved top-3 results (Within)





Query Retrieved top-3 results (Across)

# "Memory Eleven": An artistic video by Bill Newsinger: <a href="https://www.youtube.com/watch?v=djylS0Wi\_lo">https://www.youtube.com/watch?v=djylS0Wi\_lo</a>



#### **Spatio-Temporal Visualizations**

blue/green =
normal speed

yellow/orange =
slowed down



#### Conclusion

- Going beyond texture and style manipulation
- Structure manipulating in images:
  - Fully supervised (pix2pix, spade): expensive supervision of segmentation masks
  - Two unpaired domains
  - A single image pair
  - Downstream tasks: image classification and domain adaptation
- Structure manipulation in videos:
  - Single video: novel videos capturing similar object structure
  - Speeding up videos "gracefully" using "speed" as supervision
- Next?
  - Structure manipulation in 3D
  - Videos from multiple scenes
  - "Functional relationships"

Thank You! Questions?