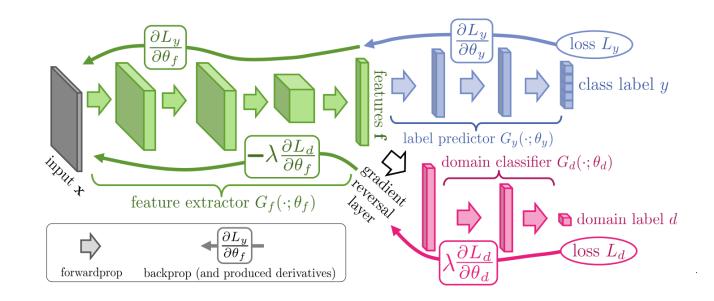
One-Sided Unsupervised Domain Mapping

Sagie Benaim and Lior Wolf

Latest Trends


1. Style Transfer (Gatys et al.)

• Replaces statistics/texture given an exemplar

Not semantic

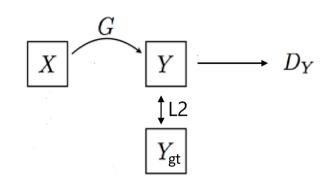
Latest Trends

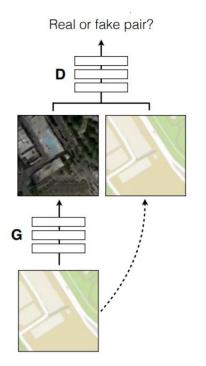
2. Domain adaptation

• "Domain-adversarial training of neural networks" Ganin et al.

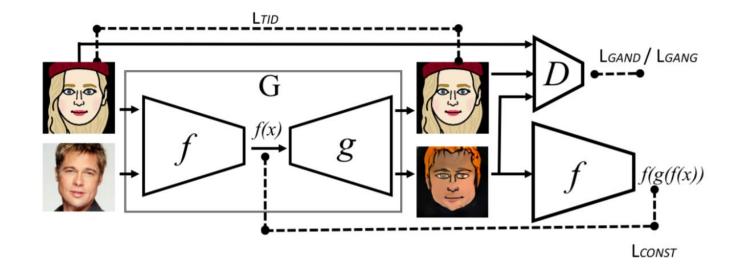
Supervised and not generative

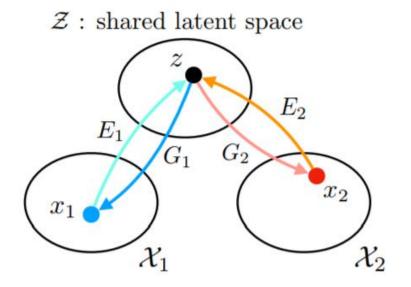
1. Style Transfer (Gatys et al.)


• Replaces statistics/texture given an exemplar


Not semantic

Fully Supervised Alignment

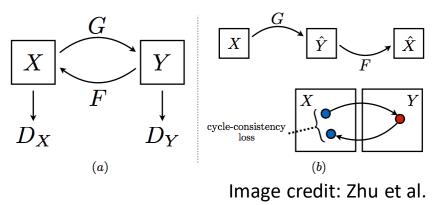

• "Image-to-image translation with conditional adversarial nets" Isola et al (pix2pix)


Partially Supervised Alignment

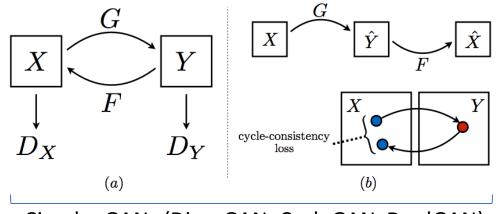
• "Unsupervised Cross-Domain Image Generation" Taigman et al.

Unsupervised Alignment

- Highly related domains
 - "Unsupervised Image-to-Image Translation Networks" Liu et al.

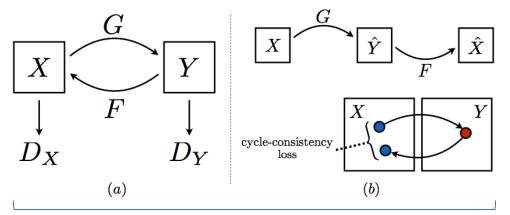


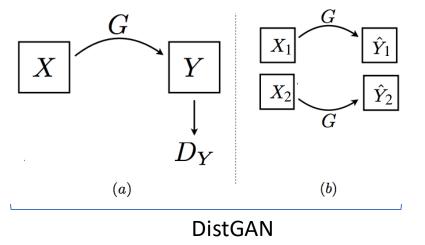
Circular GANs


DiscoGAN: "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks". Kim et al. ICML'17.

CycleGAN: "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks". Zhu et al. arXiv:1703.10593, 2017.

"**DualGAN**: Unsupervised Dual Learning for Image-to-Image Translation". Zili et al. arXiv:1704.02510, 2017.

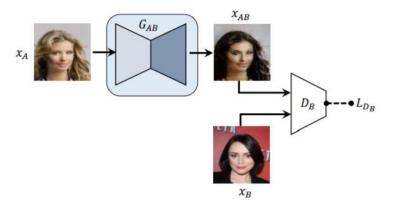

Circular GANs


Circular GANs (DiscoGAN, CycleGAN, DualGAN)

 $x \sim F(G(x))$ $y \sim G(F(y))$

Introducing DistGAN

Circular GANs (DiscoGAN, CycleGAN, DualGAN)

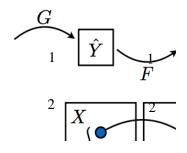


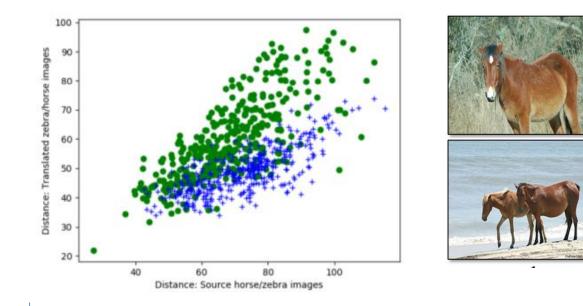
Sagie Benaim (TAU), Lior Wolf. "One-Sided Unsupervised Domain Mapping" arXiv 1706.00826, 2017. Public code on Github

$$x \sim F(G(x))$$
$$y \sim G(F(y))$$

$$|x_1 - x_2|_1 \sim |G(x_1) - G(x_2)|_1$$

Basic Building Block: Conditional GAN

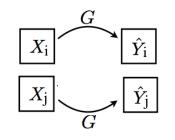



 $\mathcal{L}_{\text{GAN}}(G_{AB}, D_B, \hat{p}_A, \hat{p}_B) = \mathbb{E}_{x_B \sim \hat{p}_B}[\log D_B(x_B)] + \mathbb{E}_{x_A \sim \hat{p}_A}[\log(1 - D_B(G_{AB}(x_A)))]$

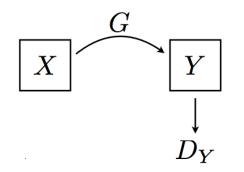
• Other GAN variants can be used: w-gan, improved w-gan, BEGAN, etc.

Correlation of distances between X and Y

- A pair of images of a given distance are mapped to a pair of outputs with a similar distance
- $|x_i x_j|_1$ and $|G(x_i) G(x_j)|_1$ are highly correlated.



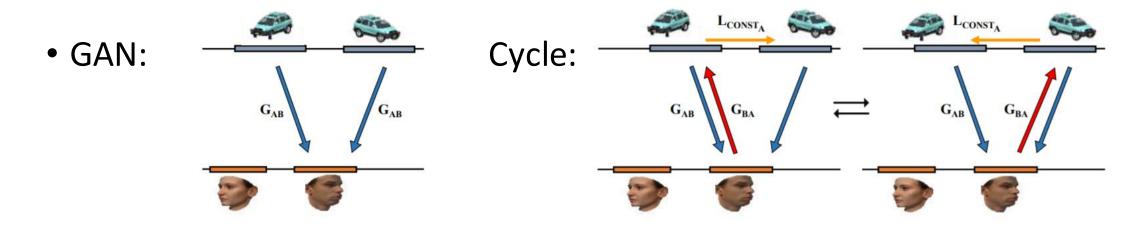
Analysis of CycleGAN's horse to zebra results


Non-negative matrix approx. of DiscoGAN's bag to shoe

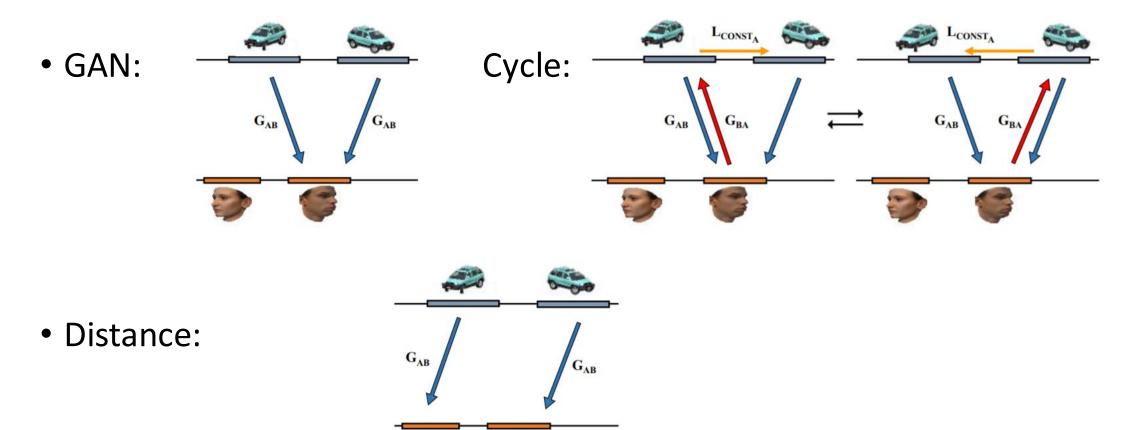
The loss used

- A distance correlation loss (L1 more stable than multiplication):
 - $\sum_{x_i, x_j} |d_1 d_2|$ • $d_1 = \frac{1}{\sigma_A} (|x_i - x_j|_1 - \mu_A)$ • $d_2 = \frac{1}{\sigma_B} (|G(x_i) - G(x_j)|_1 - \mu_A)$

• A GAN loss on Y

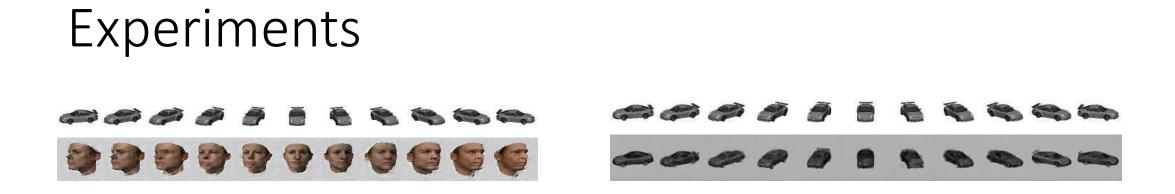

Losses Tradeoff

 $\begin{aligned} &\alpha_{1A}\mathcal{L}_{\text{GAN}}(G_{AB}, D_B, \hat{p}_A, \hat{p}_B) + \alpha_{1B}\mathcal{L}_{\text{GAN}}(G_{BA}, D_A, \hat{p}_B, \hat{p}_A) + \alpha_{2A}\mathcal{L}_{\text{cycle}}(G_{AB}, G_{BA}, \hat{p}_A) + \\ &\alpha_{2B}\mathcal{L}_{\text{cycle}}(G_{BA}, G_{AB}, \hat{p}_B) + \alpha_{3A}\mathcal{L}_{\text{distance}}(G_{AB}, \hat{p}_A) + \alpha_{3B}\mathcal{L}_{\text{distance}}(G_{BA}, \hat{p}_B) + \\ &\alpha_{4A}\mathcal{L}_{\text{self-distance}}(G_{AB}, \hat{p}_A) + \alpha_{4B}\mathcal{L}_{\text{self-distance}}(G_{BA}, \hat{p}_B) \end{aligned}$


Table 1: Tradeoff weights for each experiment.

Experiment	α_{1A}	α_{1B}	α_{2A}	α_{2B}	α_{3A}	α_{3B}	α_{4A}	α_{4B}
DiscoGAN	0.5	0.5	0.5	0.5	0	0	0	0
Distance \rightarrow	0.5	0	0	0	0.5	0	0	0
Distance \leftarrow	0	0.5	0	0	0	0.5	0	0
Dist+Cycle	0.5	0.5	0.5	0.5	0.5	0.5	0	0
Self Dist \rightarrow	0.5	0	0	0	0	0	0.5	0
$\text{Self Dist} \leftarrow$	0	0.5	0	0	0	0	0	0.5

Solves asymmetry problem: Mode Collapse

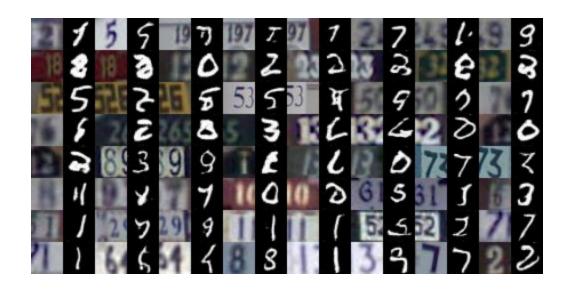


Solves asymmetry problem: Mode Collapse

GAN Architecture

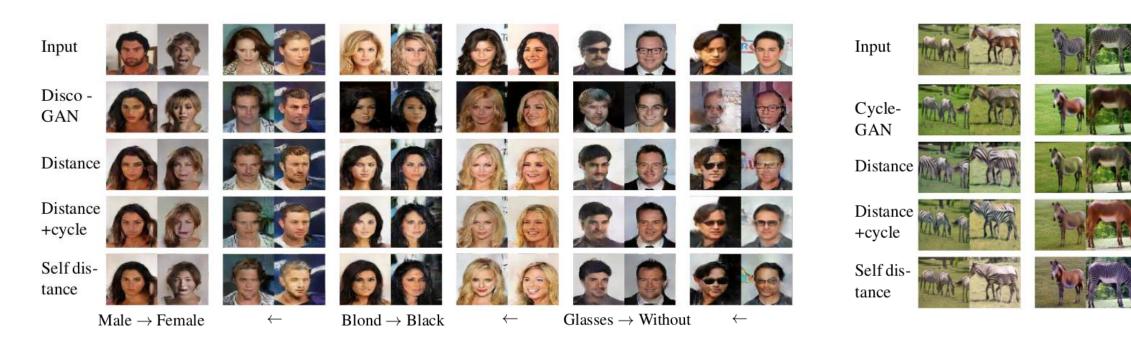
- DiscoGAN based (64 bits):
 - Generator: Encoder-Decoder, Based on DCGAN
 - Discriminator: Simple Decoder
- CycleGAN based(128-256 bits):
 - Based on "Perceptual losses for real-time style transfer and super-resolution" Johnson et al.
 - Generator: Use of additional Residual blocks
 - Discriminator: Use of 70*70 Patch-GAN

Table 2: Nor	malized	Table 3: MNIST clas-			
between the	angles o	sification on mapped			
and translate	ed imag	SHVN images.			
Method	car2car	car2head	Method	Accuracy	
DiscoGAN	0.306	0.137	CycleGAN	26.1%	
Distance	0.135	0.097	Distance	26.8%	
Dist.+Cycle	0.098	0.273	Dist.+Cycle	18.0%	


0.197

Self Dist.

25.2%


Self Dist.

0.117

	Male –	> Female	Blond -	\rightarrow Black	$Glasses \rightarrow Without$		
Method	Cosine Similarity	Separation Accuracy	Cosine Similarity	Separation Accuracy	Cosine Similarity	Separation Accuracy	
DiscoGAN	0.23	0.87	0.15	0.89	0.13	0.84	
Distance	0.32	0.88	0.24	0.92	0.42	0.79	
Distance+Cycle	0.35	0.87	0.24	0.91	0.41	0.82	
Self Distance	0.24	0.86	0.24	0.91	0.34	0.80	
	———— Other direction ———						
DiscoGAN	0.22	0.86	0.14	0.91	0.10	0.90	
Distance	0.26	0.87	0.22	0.96	0.30	0.89	
Distance+Cycle	0.31	0.89	0.22	0.95	0.30	0.85	
Self Distance	0.24	0.91	0.19	0.94	0.30	0.81	

Table 4: CelebA mapping results using the VGG face descriptor.

Comparison of Losses

Method	$\mathcal{L}_{\mathrm{GAN}}(A)$	$\mathcal{L}_{\mathrm{GAN}}(B)$	$\mathcal{L}_{ ext{cycle}}(B)$	$\mathcal{L}_{ ext{cycle}}(B)$	$\mathcal{L}_{dist}(A)$	$\mathcal{L}_{ ext{dist}}(B)$	$\mathcal{L}_{ ext{selfd}}(A)$	$\mathcal{L}_{ ext{selfd}}(B)$	
(A) Male to (B) Female:									
DiscoGAN	4.300	2.996	0.036	0.024	0.466	0.457	0.441	0.422	
Distance	3.702	2.132	0.026	0.026	0.047	0.047	0.038	0.044	
Distance+Cycle	4.280	1.651	0.017	0.016	0.046	0.043	0.042	0.040	
Self Distance	3.322	3.131	0.092	0.091	0.048	0.050	0.045	0.044	
(A) Blond to (B) Black hair:									
DiscoGAN	2.511	3.297	0.019	0.018	0.396	0.399	0.396	0.399	
Distance	0.932	2.243	0.021	0.017	0.046	0.042	0.046	0.042	
Distance+Cycle	1.045	2.484	0.013	0.012	0.043	0.043	0.043	0.042	
Self Distance	0.965	2.867	0.022	0.018	0.049	0.048	0.049	0.048	
(A) With or (B) Without eyeglasses:									
DiscoGAN	5.734	3.621	0.110	0.040	0.535	0.337	0.535	0.074	
Distance	7.697	0.804	0.046	0.036	0.023	0.065	0.023	0.065	
Distance+Cycle	5.730	0.924	0.024	0.017	0.027	0.048	0.028	0.048	
Self Distance	8.242	0.795	0.040	0.018	0.029	0.051	0.029	0.050	

Table 5: Losses measured for each method on the CelebA dataset.

Maps and Cityscapes

- FCN Score: Better per-class accuracy (Significantly), per-pixel accuracy, Class IOU.
- User Study:
 - Cityscapes Labels to Photos realness (71% of cases better than CycleGAN)
 - Similarity to Ground Truth (68% of cases better than CycleGAN)
 - Similar experiments in DiscoGAN's Male to Female and Handbags to Shoes.

Extensions and Notes

- Cycle loss: Only approximate. A zebra translated to a horse must loose its stripes.
- Minimal information is required potentially infinitely many mappings.
- Other domains? Text translation from one embedding to another.

Thank You! Questions?