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Unimodal Pix2pix, CRN, SRGAN DistanceGAN, CycleGAN, DiscoGAN,
DualGAN, UNIT, DTN, StarGAN, OST

Multimodal pix2pixHD, BicycleGAN MUNIT, Augmented CycleGAN
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Fully Supervised: pix2pix

Conditional GAN

G* = argminmax L.qgan (G, D) + ALp1(G).
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[Isola et al., CVPR 2017]



Labels to Street Scene

Labels to Facade BW to Color
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[Isola et al., CVPR 2017]



Partially Supervised Alignment

* “Unsupervised Cross-Domain Image Generation” Taigman et al.
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Unsupervised Alignment

* Highly related domains
* “Unsupervised Image-to-Image Translation Networks” Liu et al.

Z : shared latent space




Circular GANs

DiscoGAN: “Learning to Discover Cross-Domain Relations with
Generative Adversarial Networks”. Kim et al. ICML'17.

CycleGAN: “Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks”. Zhu et al. arXiv:1703.10593, 2017.

DualGAN: “ Unsupervised Dual Learning for Image-to-Image
Translation”. Zili et al. arXiv:1704.02510, 2017.



Circular GANs
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Circular GANs (DiscoGAN, CycleGAN, DualGAN)

x~F(G(x))
y~G(F(y))



Generative Modeling:

Sample Generation

Training Data | Sample Generator
(CelebA) (Karras et al, 2017)



Adversarial Nets Framework
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(Goodfellow et al., 2014)




Building Block: Conditional GAN

aida

Loan(Gap,Dp,pa,pB) =Esp~psllog Dp(xp)] + Es yop,llog(l — Dp(Gap(za))]

e Other GAN variants can be used: w-gan, improved w-gan, BEGAN, etc.

14



Our Contribution: Only a single image in domain A

Many unmatched + One sample x = Analogue
samples in domain B in domain A of xinB
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Domain B
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Domain B

e Shared Latent Space assumption (UNIT Liu et al, CoGAN Liu et al, etc): Upper

layers of the encoder and lower layers of the decoder should be shared to
achieve successful translation.
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Phase |

Real/Fake
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DomainB

e Shared Latent Space assumption (UNIT Liu et al, CoGAN Liu et al, etc): Upper

layers of the encoder and lower layers of the decoder should be shared to
achieve successful translation.

e In fact, as we only have a single sample in A, these layers, represented by the
shared encoder (Es) and shared decoder (Gs) can be trained with domain B
samples only
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Selective Backpropagation

When training our network with x and its augmentations, backpropagation isapplied selectively on
the separate encoders and decoders only.

Teg =G%(GS(ES(E%(z)))) Tas =GY(GS(ES(EY(z))))
Tea =G4 (GS(ES(E%(x)))) Tap =G5(GS(ES(Ej(x))))
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Selective Backpropagation

e Updating the shared encoder (Es) and decoder (Gs) with selective backpropagation turned off
leads to overfitting on x, since for every shared representation, the unshared layersin domain A
can still reconstruct this one sample.

Selective backprop S l q — nnn““nn
saecinesioor |- [0 I I R A EA A CI X
sz [ - 1INV ACIEAGIES
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Selective Backpropagation

e Updating the shared encoder (Es) and decoder (Gs) with selective backpropagation turned off
leads to overfitting on x, since for every shared representation, the unshared layersin domain A
can still reconstruct this one sample.

e However, as the shared encoder (Es) and decoder (Gs) can be trained with domain B

samples only, translation from domain A to B is still possible.

Selective backprop S l q — nnn““nn
saecinesioor |- [0 I I R A EA A CI X
sz [ - 1INV ACIEAGIES

27



Selective Backpropagation

e Updating the shared encoder (Es) and decoder (Gs) with selective backpropagation turned off
leads to overfitting on x, since for every shared representation, the unshared layersin domain A
can still reconstruct this one sample.

e However, as the shared encoder (Es) and decoder (Gs) can be trained with domain B

samples only, translation from domain A to B is still possible.

eUse of a Patch GAN as well as convolutional layersinduces further prior on the network that
allows for succesful translation given one input from domain A
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Quantitative Results

Number of samples in A (MNIST to SVHN) Number of samples in A (SVHN to MNIST)

== (ST == CycleGAN UNIT == (ST == CycleGAN JNIT

(a) (b)

Figure 3: (a) Translating MNIST images to SVHN images. x-axis is the number of samples in A
(log-scale), y-axis is the accuracy of a pretrained classifier on the resulting translated images. The

accuracy 1s averaged over 1000 independent runs for different samples. Blue: Our OST method.

Yellow: UNIT [7]. Red: CycleGAN [2] . (b) The same graph in the reverse direction.
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Quantitative Results

Table 1: Ablation study for the MNIST to SVHN translation (and vice versa). We consider the
contribution of various parts of our method on the accuracy. Translation is done for one sample.

Augment- One-way Selective Accuracy Accuracy
ation cycle backprop (MNIST to SVHN) (SVHN to MNIST)
False False False 0.07 0.10
True False False 0.11 0.11
False True False 0.13 0.13
True True False 0.14 0.14
False False True 0.19 0.20
True False True 0.20 0.20
False True True 0.22 0.23
True True No Phase II update 0.16 0.15
of E° and G°

True Two-way cycle True 0.20 0.13
True Two-way cycle False 0.11 0.12

True True True 0.23 0.23




Quantitative Results

Table 2: (1) Measuring the perceptual distance [29], between inputs and their corresponding output
images of different style transfer tasks. Low perceptual loss indicates that much of the high-level
content is preserved in the translation. (i1) Measuring the style difference between translated images
and images from the target domain. We compute the average Gram matrix of translated images and
images from the target domain and find the average distance between them, as described in [29].

Component Dataset OST UNIT [7] CycleGAN [2] UNIT[7] CycleGAN [2]
Samples in A 1 1 1 All All

(1) Content  Summer2Winter .64 3.20 3.53 1.41 0.41
Winter2Summer (.73 3.10 3.48 1.38 0.40
Monet2Photo 3.75 6.82 5.80 1.46 1.41
Photo2Monet 1.47 2.92 2.98 2.01 1.46

(i1) Style Summer2Winter 1.64 6.51 1.62 1.69 1.69
Winter2Summer  1.58 6.80 1.31 1.69 1.66
Monet2Photo 1.20 6.83 0.90 1.21 1.18

Photo2Monet 1.95 7.53 1.91 2.12 1.88
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Quantitative Results

Table 3: (1) Perceptual distance [29] between the inputs and corresponding output images, for various
drawing tasks. (ii) Style difference between translated images and images from the target domain.
(111) Correctness of translation as evaluated by a user study.

Method Images to  Facades Images Mapsto Labelsto  Cityscapes
Facades toImages To Maps Images Cityscapes to Labels
(1) OST 1 4.76 5.05 2.49 2.36 3.34 2.39
UNIT [7] All 3.85 4.80 2.42 2.30 2.61 2.18
CycleGAN [2] All 3.79 4.49 2.49 2.11 2.73 2.28
(11) OST 1 3.57 7.88 2.24 1.50 0.67 1.13
UNIT [7] All 3.92 7.42 2.56 1.59 0.69 1.21
CycleGAN [2] All 3.81 7.03 2.33 1.30 0.77 1.22
(111) OST 1 91% 90% 83% 67% 66% 56%
UNIT [7] ALL 86% 83% 81% 75% 63% 37%

CycleGAN [2] ALL 93% 84% 97% 81% 72% 45%




Future reseach

* One Shot Domain Adaptation
* One Shot Image to Image translation in the reverse direction
 Other Domains: Audio, Video?

* Online Setting



Thank You! Questions?



Minimality
* Potentially Infinitely many solutions preserving distance correlations
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Figure 1: An illustrative example where the two domains are line segments in R2. There are infinitely
many mappings that preserve the uniform distribution on the two segments. However, only two stand
out as “semantic”. These are exactly the two mappings that can be captured by a neural network with
only two hidden neurons and Leaky ReLU activations, i.e., by a function h(z) = o,(Wz + b), for a
weight matrix W and the bias vector b.



