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Image to Image Translation
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Fully Supervised: pix2pix

Conditional GAN

G* = argminmax L.qgan (G, D) + ALp1(G).
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[Isola et al., CVPR 2017]



Labels to Street Scene

Labels to Facade BW to Color
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Unsupervised Alignment

* Highly related domains
* “Unsupervised Image-to-Image Translation Networks” Liu et al.

Z : shared latent space




Circular GANs

DiscoGAN: “Learning to Discover Cross-Domain Relations with
Generative Adversarial Networks”. Kim et al. ICML'17.

CycleGAN: “Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks”. Zhu et al. arXiv:1703.10593, 2017.

DualGAN: “ Unsupervised Dual Learning for Image-to-Image
Translation”. Zili et al. arXiv:1704.02510, 2017.



Circular GANs
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Circular GANs (DiscoGAN, CycleGAN, DualGAN)

x~F(G(x))
y~G(F(y))



Building Block: Conditional GAN

aida

Loan(Gap,Dp,pa,pB) =Esp~psllog Dp(xp)] + Es yop,llog(l — Dp(Gap(za))]

e Other GAN variants can be used: w-gan, improved w-gan, BEGAN, etc.
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Less Supervision: Only a single image in domain A

Many unmatched + One sample x = Analogue
samples in domain B in domain A of xinB

One Shot Unsupervised Cross Domain Translation (NeurlPS 2018)
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Domain B

e Shared Latent Space assumption (UNIT Liu et al, CoGAN Liu et al, etc): Upper

layers of the encoder and lower layers of the decoder should be shared to
achieve successful translation.
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Phase |

Real/Fake
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DomainB

e Shared Latent Space assumption (UNIT Liu et al, CoGAN Liu et al, etc): Upper

layers of the encoder and lower layers of the decoder should be shared to
achieve successful translation.

e In fact, as we only have a single sample in A, these layers, represented by the
shared encoder (Es) and shared decoder (Gs) can be trained with domain B
samples only
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Selective Backpropagation

When training our network with x and its augmentations, backpropagation isapplied selectively on
the separate encoders and decoders only.

Teg =G%(GS(ES(E%(z)))) Tas =GY(GS(ES(EY(z))))
Tea =G4 (GS(ES(E%(x)))) Tap =G5(GS(ES(Ej(x))))
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Selective Backpropagation

e Updating the shared encoder (Es) and decoder (Gs) with selective backpropagation turned off
leads to overfitting on x, since for every shared representation, the unshared layersin domain A
can still reconstruct this one sample.

Selective backprop S l q — nnn““nn
saecinesioor |- [0 I I R A EA A CI X
sz [ - 1INV ACIEAGIES
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Selective Backpropagation

e Updating the shared encoder (Es) and decoder (Gs) with selective backpropagation turned off
leads to overfitting on x, since for every shared representation, the unshared layersin domain A
can still reconstruct this one sample.

e However, as the shared encoder (Es) and decoder (Gs) can be trained with domain B

samples only, translation from domain A to B is still possible.

Selective backprop S l q — nnn““nn
saecinesioor |- [0 I I R A EA A CI X
sz [ - 1INV ACIEAGIES
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Selective Backpropagation

e Updating the shared encoder (Es) and decoder (Gs) with selective backpropagation turned off
leads to overfitting on x, since for every shared representation, the unshared layersin domain A
can still reconstruct this one sample.

e However, as the shared encoder (Es) and decoder (Gs) can be trained with domain B

samples only, translation from domain A to B is still possible.

eUse of a Patch GAN as well as convolutional layersinduces further prior on the network that
allows for succesful translation given one input from domain A
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Quantitative Results

Number of samples in A (MNIST to SVHN) Number of samples in A (SVHN to MNIST)

== (ST == CycleGAN UNIT == (ST == CycleGAN JNIT

(a) (b)

Figure 3: (a) Translating MNIST images to SVHN images. x-axis is the number of samples in A
(log-scale), y-axis is the accuracy of a pretrained classifier on the resulting translated images. The

accuracy 1s averaged over 1000 independent runs for different samples. Blue: Our OST method.

Yellow: UNIT [7]. Red: CycleGAN [2] . (b) The same graph in the reverse direction.
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Quantitative Results

Table 2: (1) Measuring the perceptual distance [29], between inputs and their corresponding output
images of different style transfer tasks. Low perceptual loss indicates that much of the high-level
content is preserved in the translation. (i1) Measuring the style difference between translated images
and images from the target domain. We compute the average Gram matrix of translated images and
images from the target domain and find the average distance between them, as described in [29].

Component Dataset OST UNIT [7] CycleGAN [2] UNIT[7] CycleGAN [2]
Samples in A 1 1 1 All All

(1) Content  Summer2Winter .64 3.20 3.53 1.41 0.41
Winter2Summer (.73 3.10 3.48 1.38 0.40
Monet2Photo 3.75 6.82 5.80 1.46 1.41
Photo2Monet 1.47 2.92 2.98 2.01 1.46

(i1) Style Summer2Winter 1.64 6.51 1.62 1.69 1.69
Winter2Summer  1.58 6.80 1.31 1.69 1.66
Monet2Photo 1.20 6.83 0.90 1.21 1.18

Photo2Monet 1.95 7.53 1.91 2.12 1.88
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-

Unimodal Pix2pix, CRN, SRGAN DistanceGAN, CycleGAN, DiscoGAN,
DualGAN, UNIT, DTN, StarGAN, OST

Multimodal pix2pixHD, BicycleGAN MUNIT, Augmented CycleGAN



Emerging Disentanglement in Auto-Encoder Based
Unsupervised Image Content Transfer (ICLR 2019)

(b) Translation
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Up to now: Style Only

Input + Sample translations Input . Sample translations
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Our Contribution: Full Content
Disentanglement

e 2 Encoders:
* Encoder el encodes common content from both domains
* Encoder e2 encodes separate contentfrom second domain

* One Decoder

* Decoder g takes the concatenation of el and e2’s output and produces and
image
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Qualitative Results

Input Face Images
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Qualitative Results

Our Method

Glasses

Figure 2: Glasses transfer. Our method vs literature baselines. Each image combines the domain A
image in the top row, with the content of the guide image on the left column.
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Qualitative Results
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Figure 6: A comparison to the Fader networks of Lample et al. (2017) for the task of removing a
feature. (a) Glasses. (b) Facial hair. (c) Mouth opening.

37



Quantitative Results

Table 4: Classifier results for the image obtained after removing the desired feature. Results are the
mean probability of domain B for images that were transformed to domain A.

Probability of class B Glasses Smile Facial Hair

Fader networks (Lample et al., 2017)  0.066  0.064 0.182
Our 0.011  0.052 0.119
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Quantitative Results

Table 3: User study results. In each cell is the ratio of images, were users selected a real image as
more natural than a generated one. Closer to 50% is better for the method.

Forced choice performed by the user Glasses Smile Facial Hair

Selected b over g(e1(a),e2(b’)), fora € A,b,b' € B 582% 63.4% 51.7%
Selected b over g(e1(b), e2(b')), for b, b’ € B 742% 65.8%  56.7%
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Quantitative Results

Table 1: A comparison to other unsupervised guided image to image translation methods. Tk = 5 is
the number of pre-segmented face parts. *Used for domain confusion, not on the output.
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Other Domains?

* Audio Separation: Training data consists of a set of samples of mixed
music and an unmatched set of instrumental music.

* Given a mixed sample, wish the separate the voice from the
background instrumental music.



Key Elements

* After mapping the audio sample to a Spectrogram, can subtract the
“background” from the “mixed” sample in “pixel space”, to get the
“voice” only sample.
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Future reseach

* One Shot Domain Adaptation

* One Shot Image to Image translation in the reverse direction
 Other Domains: Audio, Video?

* Online Setting

* Finer Details of Disentanglement

* Other Domains where “Pixel Space” Subtraction is possible.



Thank You! Questions?



Minimality
* Potentially Infinitely many solutions preserving distance correlations
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Figure 1: An illustrative example where the two domains are line segments in R2. There are infinitely
many mappings that preserve the uniform distribution on the two segments. However, only two stand
out as “semantic”. These are exactly the two mappings that can be captured by a neural network with
only two hidden neurons and Leaky ReLU activations, i.e., by a function h(z) = o,(Wz + b), for a
weight matrix W and the bias vector b.



