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Image to Image Translation
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Paired Unpaired



Fully Supervised: pix2pix

[Isola et al., CVPR 2017]



[Isola et al., CVPR 2017]



Unsupervised Alignment

• Highly related domains
• “Unsupervised Image-to-Image Translation Networks” Liu et al. 
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Circular GANs

DiscoGAN: “Learning to Discover Cross-Domain Relations with 
Generative Adversarial Networks”. Kim et al. ICML’17. 

CycleGAN: “Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks”. Zhu et al. arXiv:1703.10593, 2017.

DualGAN: “ Unsupervised Dual Learning for Image-to-Image 
Translation”. Zili et al. arXiv:1704.02510, 2017.
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Circular GANs

Circular GANs (DiscoGAN, CycleGAN, DualGAN)

𝑥~𝐹 𝐺 𝑥

𝑦~𝐺(𝐹 𝑦 )
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Building Block: Conditional GAN

• Other GAN variants can be used: w-gan, improved w-gan, BEGAN, etc.
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Less Supervision: Only a single image in domain A
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One Shot Unsupervised Cross Domain Translation (NeurIPS 2018)



Phase I
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Phase I
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Phase I

14

• Shared Latent Space assumption (UNIT Liu et al, CoGAN Liu et al, etc): Upper 
layers of the encoder and lower layers of the decoder should be shared to 
achieve successful translation.



Phase I
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• Shared Latent Space assumption (UNIT Liu et al, CoGAN Liu et al, etc): Upper 
layers of the encoder and lower layers of the decoder should be shared to 
achieve successful translation.

• In fact, as we only have a single sample in A, these layers, represented by the 
shared encoder (Es) and shared decoder (Gs) can be trained with domain B 
samples only



Phase II
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Phase II
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Phase II
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Phase II
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Selective Backpropagation

20

When training our network with x and its augmentations, backpropagation is applied selectively on 
the separate encoders and decoders only.



Selective Backpropagation
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• Updating the shared encoder (Es) and decoder (Gs) with selective backpropagation turned off 
leads to overfitting on x, since for every shared representation, the unshared layers in domain A 
can still reconstruct this one sample.



Selective Backpropagation
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• Updating the shared encoder (Es) and decoder (Gs) with selective backpropagation turned off 
leads to overfitting on x, since for every shared representation, the unshared layers in domain A 
can still reconstruct this one sample.
• However, as the shared encoder (Es) and decoder (Gs) can be trained with domain B 
samples only, translation from domain A to B is still possible.



Selective Backpropagation
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• Updating the shared encoder (Es) and decoder (Gs) with selective backpropagation turned off 
leads to overfitting on x, since for every shared representation, the unshared layers in domain A 
can still reconstruct this one sample.
• However, as the shared encoder (Es) and decoder (Gs) can be trained with domain B 
samples only, translation from domain A to B is still possible.
•Use of a Patch GAN as well as convolutional layers induces further prior on the network that 
allows for succesful translation given one input from domain A



Qaulitative Results
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Qaulitative Results
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Quantitative Results
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Quantitative Results
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Supervised Unsupervised

Unimodal Pix2pix, CRN, SRGAN DistanceGAN, CycleGAN, DiscoGAN, 
DualGAN, UNIT, DTN, StarGAN, OST

Multimodal pix2pixHD, BicycleGAN MUNIT, Augmented CycleGAN



Emerging Disentanglement in Auto-Encoder Based 
Unsupervised Image Content Transfer (ICLR 2019)
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Up to now: Style Only
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Our Contribution: Full Content 
Disentanglement
• 2 Encoders: 

• Encoder e1 encodes common content from both domains

• Encoder e2 encodes separate content from second domain

• One Decoder 
• Decoder g takes the concatenation of e1 and e2’s output and produces and 

image
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Losses
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Losses
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Losses
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Qualitative Results

35



Qualitative Results

36



Qualitative Results
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Quantitative Results
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Quantitative Results
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Quantitative Results
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Other Domains?

• Audio Separation: Training data consists of a set of samples of mixed 
music and an unmatched set of instrumental music. 

• Given a mixed sample, wish the separate the voice from the 
background instrumental music. 
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Key Elements

• After mapping the audio sample to a Spectrogram, can subtract the 
“background” from the “mixed” sample in “pixel space”, to get the 
“voice” only sample. 
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Future reseach

• One Shot Domain Adaptation

• One Shot Image to Image translation in the reverse direction

• Other Domains: Audio, Video?

• Online Setting

• Finer Details of Disentanglement

• Other Domains where “Pixel Space” Subtraction is possible. 
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Thank You! Questions?
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Minimality

• Potentially Infinitely many solutions preserving distance correlations
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