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Visual Analogies
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DiscoGAN, Kim et al., ICML 2017



Visual Analogies

Monet 7_ Photos Summer Z_ Winter

photo —»Monet horse — zebra winter —» summer

R N NN N NN TR N R R R RN R R R R R R AR AR RS R R R RN R R A R a sessnsannEnnn L L L T

o T

Photograph Monet Van Gogh zanne

CycleGAN, Zhu et al., ICCV 2017



Part |: The role of disentanglement in visual analogies



One to many problem

* CycleGAN and DiscoGAN produce a single output
* Many visual analogies exist
* MUNIT and DRIT: Style and texture variations

Input : Sample translations

a. -

(b) edges <+ handbags

Huang et al., ECCV 2018



Cannot transfer content

Press et al, ICLR 2019



Attribute Transfer

Add Mustache Add Beard To Old

Raw Image Reconstruction Add Eveglasses To Female To Brown Hair ) d >
& ves To Light Eyebrows To Mouth Closed Remove Bangs

Liu et al, CVPR 2019



Add glasses Transfer specific glasses

Target Result Source Target Result




Domain Intersection and Domain Difference

S. Benaim, M. Khaitov, T. Galanti, L. Wolf. ICCV 2019.

Given two visual domains, disentangle the
separate (domain specific) information and
common (domain invariant) information.



Disentanglement in Literature

* BetaVAE, AnnealedVAE, FactorVAE and other works disentangle a
particular 'pre-specified' property in a set of images, such as color,

shape, size.
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* We aim to disentangle the separate (domain specific)
and common (domain invariant).




If A is persons with glasses and B is smiling persons, our method produces three

latent spaces:

1. "Common" latent space, E.(A) = E.(B). The space of common facial
features. For c € AU B, E.(c) is the facial features of c.
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latent spaces:

1. "Common" latent space, E.(A) = E.(B). The space of common facial
features. For c € AU B, E.(c) is the facial features of c.

2. "Separate" latent space for domain A, E; (A). The space of glasses. E;(a) is
the glasses of a.




If A is persons with glasses and B is smiling persons, our method produces three

latent spaces:

1. "Common" latent space, E.(A) = E.(B). The space of common facial
features. For c € AU B, E.(c) is the facial features of c.

2. "Separate" latent space for domain A, E; (A). The space of glasses. E;(a) is
the glasses of a.

3. "Separate" latent space for domain B, Ez (B). The space of smiles. EZ(b) is
the smile of b.




Given this disentangled representation, we generate a visual sample
G(E.(c),E;(a), E5(b)), having the facial features of c, glasses of a, smile of b.




G(E.(b),E5(a), 0)
remove b’s smile
add a’s glasses

Glasses




Legend:

The "common" (or shared) Loss

Domain B

Shared encoder

Ensures E_. encodes information common to both domains

Generator

Loss

Encoder E_. attempts to match
distributions of E, (A) and E.(B):

M9

— Zi(d(E (@i)), 1) + — Zi(d(E (05)),1)

Discriminator d attempts to
separate distributions:
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Reconstruction Losses

Ensures the “common” and
“separate” encodings contain all
the information in Aor B

=== = = Locon(@, G(E%(a), E4(a),0)) - - —

Legend:
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Shared encoder
Generator

Loss




"Zero" Loss

Ensures the separate encoder of A
(resp. B) does not encode

information about B (resp. A)
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Training:
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- .DomainA
. - Domain B
| n fe re n Ce ’ - Shared encoder
- Generator
G(E.(b),E;(a), 0) G(E:(a),0,E; (D))
remove b’s smile remove a’s glasses

add a’s glasses add b’s smile




Results

Beard to Smile Glasses to Smile Glasses N Smile

Figure 8. Translating from the domain of persons with facial hain Figure 7. Translating from the domain of persons with glasses to
to the domain of smiling persons. the domain of smiling persons (reverse translation to Fig. 2 in main
report)



Interpolations

Common Latent Space (Facial Features)

Separate B Latent Space (Beard)




Interpolations

Common Latent Space (Facial Features)
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Interpolations

Separate B Latent Space (Beard)

Separate A Latent Space (Smile)




Domain Adaptation

* Our disentangled representation is useful for Unsupervised Domain
Adaptation: No labels at all.

e A pretrained classifier is used to evaluate the percentage of images
mapped to the same label in the target domain.

* Given an MNIST digit a, we randomly sample an SVHN digit b and
consider the translation to SVHN as G(E.(a), 0, E; (b)).

e Achieve SOTA: MNIST to SVHN: 61.0%, Reverse: 41.0%



Theory

Definition 1 (Intersection). We say that the two representa-
tions a = g(e(a),e%(a),0) and b = g(e®(b),0,ej(b))
form an intersection between a and b, if for any
other representation a = §(é(a),é5(a),0) and b =
g(€c(b),0,€é%(b)), such that, g is invertible and €°(a) ~
€°(b), we have: H(é(a)) < H(e(a)).



Theory

 Under mild assumptions (such as our losses being minimized):
* EYA)and ES,(A) are independent (Similarly for B).
e E¢(A)capturesthe information underlying e(A) (Similarly for B).
* ES,(A)holds the information underlying e®,(A) (Similarly for B).

 |.e.ourlosses are both necessary and sufficient for the desired
disentanglement.



Masked Based Unsupervised Content Transfer
R. Mokady, S. Benaim, L. Wolf, A. Bermano. ICLR 2020.

* Only a local change in the target is
needed

* Learn a mask and adapt only the
area in the masked area




Two Attributes Smile to Glasses




Additional Content Transfer
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Interpolation




Attribute Removal

Figure 6: Attr removal.

Facial Hair

Smile

Glasses

Table 6: Attribute removal for the task of Smile, Facial hair and Glasses.

Task Method KID FID Class. Sim.
Smile Ours 26+04 1200+26 969% 096
Pressetal. 15.0+06 167.7+03 969% 0.81
He et al. 4.1+04 127.7+45 969% 0.95
Liu et al. 4.3 + 0.3 1290 + 3 98.4% 0.92
Fader 11.3+£0.7 1556+47 93.7% 0.89
Mustache Ours 1.9+ 0.5 1190+08 953% 0.95
Pressetal. 166 +08 1759+14 100.0% 0.80
He et al. 46+05 130030 875% 0.96
Liu et al. 140+06 1600+33 87.5% 0.85
Fader 1414+06 1626+15 984% 0.76
Glasses Ours 5.2+ 0.5 136.5+26 99.2% 0.87
Pressetal. 153+05 172047 100.0% 0.73
He et al. 8.3+0.9 141.44+6.8 100.0% 0.84
Liu et al. 6.8+03 1418+48 984% (.86
Fader 1254+ 03 137742 100.0% 0.76




Out of Domain Manipulation

Figure 23: Out of domain translation. (a) Results on extremely out of domain images. (b) Results
obtained by manipulating LFW images.



Semi Supervised Segmentation Using Class
Information
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Part II: Generating analogies from few examples



One-shot unsupervised cross domain translation
S. Benaim, L. Wolf. NeurlPS 2019.

Many unmatched + One sample x = Analogue
samples in domain B in domain A of xinB
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Phase |

For Domain B:
 Train a Variational Autoencoder
e Use a GAN loss to enhance visual quality

Encoder Discriminator

Domain B
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Phase |

Shared Ecnoder
and Decoder Layers

e Shared Latent Space assumption (UNIT Liu et al, CoGAN Liu et al): Upper
layers of the encoder and lower layers of the decoder should be shared to

achieve successful translation.
e Shared encoder (Es) and shared decoder (Gs) can be trained with domain

B samples only 39



Domain A

Separate Layers for A

Domain B

Phase |l

I Frozen

Real/Fake
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Domain A

Separate
Layers for A

Domain B

I Frozen

Real/Fake

\
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Phase |l

1. Reconstruction Loss for A
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Domain A

Separate
Layers for A

Domain B

I Frozen

Real/Fake

Phase |l

1. Reconstruction Loss for A

2. Cycle Loss for A
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Domain A

Separate
Layers for A

Domain B

I Frozen

Real/Fake
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Phase |l

1. Reconstruction Loss for A

2. Cycle Loss for A

3. GAN losson A--> B
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Selective Backpropagation

* Augmentations on A
e Patch discriminator

* Backpropagation is applied selectively on the separate encoders and
decoders only.

e Similar to Transfer Learning - Finetuning on few layers

Domain A

I Frozen

Rpa/Raga

Separate
Layers for A

Domain B

44



Selective Backpropagation

e Updating the shared encoder (Es) and decoder (Gs)
with selective backpropagation turned off leads
to overfitting on x
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Selective Backpropagation

e Updating the shared encoder (Es) and decoder (Gs)
with selective backpropagation turned off leads

to overfitting on x
e However, as the shared encoder (Es) and decoder

(Gs) can be trained with domain B samples only, translation
from domain A to B is still possible.
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Qualitative Results
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Domain Adaptation
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Figure 3: (a) Translating MNIST images to SVHN images. x-axis is the number of samples in A
(log-scale), y-axis is the accuracy of a pretrained classifier on the resulting translated images. The

accuracy 1s averaged over 1000 independent runs for different samples. Blue: Our OST method.

Yellow: UNIT [7]. Red: CycleGAN [2] . (b) The same graph in the reverse direction.
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Structural-analogy from a Single Image Pair
S. Benaim, R. Mokady, A. Bermano, D Cohen-Or, L. Wolf. In Submission.

analogy g structure

Fig. 1. Our method takes two images as input (left and right), and generates images
that consist of features from one image, spatially structured analogically to the other.
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Main |ldea

* In classical work (e.g Irani et al.), two visual signals are defined to be
similar if all patches of one (at multiple scales) are contained in the
other (completeness), and vice versa (coherence).

* Key idea: produce a mapping in which the patch distribution of a
source image is mapped to its corresponding patch distribution of a
target image and vice versa.

* When the multi-scale distributions match, in both
directions, completeness and coherence are guaranteed.



Method

For each scale n:

Unconditional Generation: Generate many samples of the same
patch distribution

Conditional Generation: Given a sample x, generate an analgeous
sample using a conditional generator at scale n

‘to n+1

Real/Fake Real/Fake
H an el m» © - e e &
Zp  rmmmmmm—————————— LaduA Lade
(0for
reconstruction)
SRS f

Conditional

~

LreconA LcycleA
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Method

* The same generator acts as both an unconditional generator and a
conditional generator (same weights)
* The receptive field of the generator is fixed to 11x11 and the size
of the image increases at each scale (level)
* Use of Patch-GAN or patch discriminator, to discriminate based on
patches only
Jon+1

Real/Fake Real/Fake
B T g o N LadvA Lade
(0for
reconstruction)
= (&

Conditional

LreconA
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Losses

e Adversarial Patch-GAN Loss
e Cycle Loss (Conditional Generation)
e Reconstruction Loss (Unconditional Generation)

‘to n+1

Real/Fake
LadvA

Real/Fake

Laavs

LreconA

Conditional
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Visual Results

Output

Input

Output

Input
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Random Generations

(b)
Fig. 5. (a) Left: Input image A (hot air balloons). Right: Randomly generated samples

@ (top) and their translation ab (bottom). (b) As in (a) but for image B (birds).
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Sketch to Image

Sketch (A)
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Style and Texture

Style (B) Content (A)
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Text Transfer

|
Style (B) Content (A) |  Ours
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Videos



Thank You! Questions?



Numerical Results: Pretrained Classifier

Smile To Glasses Facial Hair Smile To Facial Hair  Glasses To
Glasses To Smile To Smile Facial Hair To Glasses  Facial Hair

Fader networks [ 5] 76.8% 97.3% 95.4% 84.2% 77.8 % 85.2%
Guided content transfer [20] 45.8% 92.7% 85.6% 85.1% 38.6% 82.2%
MUNIT [12] 7.3% 9.2% 9.3% 8.4% 7.3% 8.5%
DRIT [16] 8.5% 6.3% 6.3% 10.3% 8.6% 10.1%
Ours 91.8% 99.3% 93.7% 87.1% 93.1% 97.2%

Table 1. We pretrain a classifier to distinguish between samples in A (e.g. images of persons with glasses) and samples in B (e.g.
images of persons with smile). We then sample @ € A, b € B from the test samples and check the membership of the generated image

G(E(b), E%(a),0)) in A. Similarly, in the reverse direction, we check the membership of G(E(a), 0, E%(b)) in B.



Numerical Results: User Study

* Q1: Is the specific attribute of A (e.g smile) removed?
* Q2: Is the guided image b specific attribute (e.g glasses) added?

* Q3: Is the identify of a’s image preserved?

Smile To Glasses Facial Hair Smile To Facial Hair  Glasses To

Glasses To Smile To Smile Facial Hair  To Glasses Facial Hair
Question (1) ours 474 +0.13 430 +0.21 4.26+0.20 4.304+0.15 4.18+0.17 4.50+0.18
Question (2) ours 392 +0.16 4.45+0.12 4.03 £0.15 3.34 £0.17 3.85 +£0.20 3.95 +0.22
Question (3) ours 395 +0.23 3.20+£0.24 3.24 £0.25 3.22 4+0.27 3.49 +£0.22 3.39 +0.23
Question (1) for [20]  3.67 £0.17 4.16 £0.18 3.39 £0.19 3.34 £0.13 4.24 +£0.12 3.15 £0.15
Question (2) for [20]  1.87 £0.35 4.42 4+0.22 3.00 £0.32 2.67 £0.33 2.20 +£0.42 3.30 £0.22
Question (3) for [20]  3.95 £0.15 2.93 £0.22 3.37 £0.25 3.40 £0.27 3.43 +£0.28 3.75 £0.20

Table 2. Given 20 randomly selected images a € A and b € B, we consider the generated image G(E“(a),0, E%(b))) and ask if (1) a’s
separate part is removed (2) b’s separate part is added (3) a’s common part is preserved (similarly in the reverse direction). Mean opinion
scores in the range of 1 to 5 are reported, where higher is better.



Minimality
* Potentially Infinitely many solutions preserving distance correlations

Bl 3 B= ]

(0,2) (1.2) (0,2) (1,2)
W‘(o 4—2b:) W‘(o 4—2b2)
Ak i Ak J
(OI?) (1I§) (0,;) (1,;)
(0,0) (0,0)

Figure 1: An illustrative example where the two domains are line segments in R2. There are infinitely
many mappings that preserve the uniform distribution on the two segments. However, only two stand
out as “semantic”. These are exactly the two mappings that can be captured by a neural network with
only two hidden neurons and Leaky ReLU activations, i.e., by a function h(z) = o,(Wz + b), for a
weight matrix W and the bias vector b.



Quantitative Results

Table 1: Ablation study for the MNIST to SVHN translation (and vice versa). We consider the
contribution of various parts of our method on the accuracy. Translation is done for one sample.

Augment- One-way Selective Accuracy Accuracy
ation cycle backprop (MNIST to SVHN) (SVHN to MNIST)
False False False 0.07 0.10
True False False 0.11 0.11
False True False 0.13 0.13
True True False 0.14 0.14
False False True 0.19 0.20
True False True 0.20 0.20
False True True 0.22 0.23
True True No Phase II update 0.16 0.15
of E° and G°

True Two-way cycle True 0.20 0.13
True Two-way cycle False 0.11 0.12

True True True 0.23 0.23




Quantitative Results

Table 2: (1) Measuring the perceptual distance [29], between inputs and their corresponding output
images of different style transfer tasks. Low perceptual loss indicates that much of the high-level
content is preserved in the translation. (i1) Measuring the style difference between translated images
and images from the target domain. We compute the average Gram matrix of translated images and
images from the target domain and find the average distance between them, as described in [29].

Component Dataset OST UNIT [7] CycleGAN [2] UNIT[7] CycleGAN [2]
Samples in A 1 1 1 All All

(1) Content  Summer2Winter .64 3.20 3.53 1.41 0.41
Winter2Summer (.73 3.10 3.48 1.38 0.40
Monet2Photo 3.75 6.82 5.80 1.46 1.41
Photo2Monet 1.47 2.92 2.98 2.01 1.46

(i1) Style Summer2Winter 1.64 6.51 1.62 1.69 1.69
Winter2Summer  1.58 6.80 1.31 1.69 1.66
Monet2Photo 1.20 6.83 0.90 1.21 1.18

Photo2Monet 1.95 7.53 1.91 2.12 1.88

65



Quantitative Results

Table 3: (1) Perceptual distance [29] between the inputs and corresponding output images, for various
drawing tasks. (ii) Style difference between translated images and images from the target domain.
(111) Correctness of translation as evaluated by a user study.

Method Images to  Facades Images Mapsto Labelsto  Cityscapes
Facades toImages To Maps Images Cityscapes to Labels
(1) OST 1 4.76 5.05 2.49 2.36 3.34 2.39
UNIT [7] All 3.85 4.80 2.42 2.30 2.61 2.18
CycleGAN [2] All 3.79 4.49 2.49 2.11 2.73 2.28
(11) OST 1 3.57 7.88 2.24 1.50 0.67 1.13
UNIT [7] All 3.92 7.42 2.56 1.59 0.69 1.21
CycleGAN [2] All 3.81 7.03 2.33 1.30 0.77 1.22
(111) OST 1 91% 90% 83% 67% 66% 56%
UNIT [7] ALL 86% 83% 81% 75% 63% 37%

CycleGAN [2] ALL 93% 84% 97% 81% 72% 45%




