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Part I: The role of disentanglement in visual analogies



One to many problem
• CycleGAN and DiscoGAN produce a single output

• Many visual analogies exist

• MUNIT and DRIT: Style and texture variations

Huang et al., ECCV 2018



Cannot transfer content

Press et al, ICLR 2019



Attribute Transfer

Liu et al, CVPR 2019



Transfer specific glasses

ResultTargetSource

Add glasses

Target Result



Given two visual domains, disentangle the 
separate (domain specific) information and 
common (domain invariant) information.

Domain Intersection and Domain Difference
S. Benaim, M. Khaitov, T. Galanti, L. Wolf. ICCV 2019.



Disentanglement in Literature

• BetaVAE, AnnealedVAE, FactorVAE and other works disentangle a 
particular 'pre-specified' property in a set of images, such as color, 
shape, size.

• We aim to disentangle the separate (domain specific) 
and common (domain invariant).
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Given this disentangled representation, we generate a visual sample 
𝐺(𝐸𝑐 𝑐 , 𝐸𝐴

𝑠(𝑎), 𝐸𝐵
𝑠(𝑏)), having the facial features of c, glasses of a, smile of b. 



Smile

𝐺(𝐸𝑐 𝑏 ,𝐸𝐴
𝑠(𝑎), 0)

remove b′s smile
add a′s glasses



The "common" (or shared) Loss

Discriminator 𝑑 attempts to 
separate distributions:

Encoder 𝐸𝑐 attempts to match 
distributions of 𝐸𝑐 𝐴 and 𝐸𝑐(𝐵):

Ensures 𝑬𝒄 encodes information common to both domains



Reconstruction Losses

Es
A(A)

Es
A(A)

Ensures the “common” and 
“separate” encodings contain all 
the information in A or B



"Zero" Loss

Ensures the separate encoder of A 
(resp. B) does not encode 

information about B (resp. A)



Training:



Inference:

𝐺(𝐸𝑐 𝑏 ,𝐸𝐴
𝑠(𝑎), 0)

remove b′s smile
add a′s glasses

𝐺(𝐸𝑐 𝑎 , 0, 𝐸𝐴
𝑠(𝑏))

remove a′s glasses
add b′s smile



Results
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Interpolations
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Domain Adaptation

• Our disentangled representation is useful for Unsupervised Domain 
Adaptation: No labels at all. 

• A pretrained classifier is used to evaluate the percentage of images 
mapped to the same label in the target domain.

• Given an MNIST digit a, we randomly sample an SVHN digit b and 
consider the translation to SVHN as 𝐺(𝐸𝑐 𝑎 , 0, 𝐸𝐴

𝑠(𝑏)). 

• Achieve SOTA: MNIST to SVHN: 61.0%, Reverse: 41.0%



Theory



Theory

• Under mild assumptions (such as our losses being minimized):
• Ec(A) and Es

A(A) are independent (Similarly for B).

• Ec(A) captures the information underlying ec(A) (Similarly for B).

• Es
A(A) holds the information underlying es

A(A) (Similarly for B).

• I.e. our losses are both necessary and sufficient for the desired 
disentanglement.



Masked Based Unsupervised Content Transfer

• Only a local change in the target is 
needed

• Learn a mask and adapt only the 
area in the masked area

R. Mokady, S. Benaim, L. Wolf, A. Bermano. ICLR 2020.



Two Attributes Smile to Glasses



Additional Content Transfer



Interpolation



Attribute Removal



Out of Domain Manipulation



Semi Supervised Segmentation Using Class 
Information

Input GT Ours



Part II: Generating analogies from few examples
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One-shot unsupervised cross domain translation
S. Benaim, L. Wolf. NeurIPS 2019.



Phase I
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For Domain B:
• Train a Variational Autoencoder
• Use a GAN loss to enhance visual quality

Encoder Decoder Discriminator



Phase I
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• Shared Latent Space assumption (UNIT Liu et al, CoGAN Liu et al): Upper 
layers of the encoder and lower layers of the decoder should be shared to 
achieve successful translation.
• Shared encoder (Es) and shared decoder (Gs) can be trained with domain 
B samples only

Shared Ecnoder
and Decoder Layers



Phase II
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Separate Layers for A



Phase II
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1. Reconstruction Loss for A

Separate 
Layers for A



Phase II
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1. Reconstruction Loss for A

2. Cycle Loss for A

Separate 
Layers for A



Phase II
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1. Reconstruction Loss for A

2. Cycle Loss for A

3. GAN loss on A --> B

Separate 
Layers for A



Selective Backpropagation

44

• Augmentations on A
• Patch discriminator
• Backpropagation is applied selectively on the separate encoders and 

decoders only.
• Similar to Transfer Learning - Finetuning on few layers

Separate 
Layers for A



Selective Backpropagation
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• Updating the shared encoder (Es) and decoder (Gs) 
with selective backpropagation turned off leads 
to overfitting on x



Selective Backpropagation
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• Updating the shared encoder (Es) and decoder (Gs) 
with selective backpropagation turned off leads 
to overfitting on x
• However, as the shared encoder (Es) and decoder 
(Gs) can be trained with domain B samples only, translation 
from domain A to B is still possible.



Qualitative Results
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Input Output Input Output Input Output

Input Output Input Output



Domain Adaptation
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Structural-analogy from a Single Image Pair

49

S. Benaim, R. Mokady, A. Bermano, D Cohen-Or, L. Wolf. In Submission.



Main Idea

• In classical work (e.g Irani et al.), two visual signals are defined to be 
similar if all patches of one (at multiple scales) are contained in the 
other (completeness), and vice versa (coherence).

• Key idea: produce a mapping in which the patch distribution of a 
source image is mapped to its corresponding patch distribution of a 
target image and vice versa.

• When the multi-scale distributions match, in both 
directions, completeness and coherence are guaranteed.

50



Method
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For each scale n:
• Unconditional Generation: Generate many samples of the same 

patch distribution
• Conditional Generation: Given a sample x, generate an analgeous 

sample using a conditional generator at scale n



Method
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• The same generator acts as both an unconditional generator and a 
conditional generator (same weights)

• The receptive field of the generator is fixed to 11x11 and the size 
of the image increases at each scale (level)

• Use of Patch-GAN or patch discriminator, to discriminate based on 
patches only



Losses
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• Adversarial Patch-GAN Loss
• Cycle Loss (Conditional Generation)
• Reconstruction Loss (Unconditional Generation)



Visual Results
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Input Output Input Output Input Output



Random Generations
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Sketch to Image
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Style and Texture
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Text Transfer
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Videos
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Thank You! Questions?
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Numerical Results: Pretrained Classifier



Numerical Results: User Study

• Q1: Is the specific attribute of A (e.g smile) removed? 

• Q2: Is the guided image b specific attribute (e.g glasses) added?

• Q3: Is the identify of a’s image preserved?



Minimality

• Potentially Infinitely many solutions preserving distance correlations
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Quantitative Results
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Quantitative Results
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Quantitative Results
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