An Introduction to Generative Adversarial Networks

Sagie Benaim Tel Aviv University

Generative Modeling: Density Estimation

Training Data

Density Function

Generative Modeling: Sample Generation

Training Data (CelebA)

Sample Generator (Karras et al, 2017)

Adversarial Nets Framework

Self-Play

1959: Arthur Samuel's checkers agent

(OpenAI, 2017)

(Bansal et al, 2017)

Progress on Face Generation

2014

2016

2017

(Brundage et al, 2018)

BigGAN – Late 2018

From GAN to BigGAN

- Depth and Convolution
- Class-conditional Generation
- Wasserstein GAN
- Self Attention
- BigGAN

No Convolution Needed to Solve Simple Tasks

Original GAN, 2014

Depth and Convolution for Harder Tasks

Original GAN (CIFAR-10)

No convolution

One convolutional layer

DCGAN (ImageNet)

Many convolutional layers (Radford et al, 2015)

From GAN to BigGAN

- Depth and Convolution
- Class-conditional Generation
- Wasserstein GAN
- Self Attention
- BigGAN

Class-Conditional GANs

0	C	0	0	Ø	0	C;	0	Ő	0	0	â	0		Ô	Ø	5	Q	Ò	0
Ì.	1	1	1	-		1		ł	1	ļ	1	ł	ſ	ĺ	ł	l	1	1	ļ
Э.	2	2	2	2	2		2		2	2		1	3	С.	2	1	3	J	Ì
	<u>,</u>		3	$\langle \Omega \rangle$	3	3	3		t, y	3	3	3	3	N)		4.00 Same	3	ŝ	3
¥	51	针	4	×.	Ŷ	4	4	4	\hat{Q}_{i}	Ŷ	4	4	¥	4	4	4	4	4	4
\$	5	5	Ş	5	2	б	5	\$	433	5	5	Ę,	1	5	5	5		1	5
i.	6	6	6.	i v	12	1.3	á	6	с,	6	6	6	1.0	6	S.	¢	Û	Ś	6
7	7	7	7	N	<u>لي الم</u>	1	÷.	7	7	7	7	7	7	Ţ.	7	7	1	7	
8	E	2	\$	2	2	1	ŧ	8	*	8	8	8	8	8	7	ŝ	8	E	
9		4	9	ÿ	9	4	7	9	4	9	9	9	9	9	9	٩.	Ŷ	9	5

(Mirza and Osindero, 2014)

AC-GAN: Specialist Generators

monarch butterfly

goldfinch

daisy

redshank

grey whale

(Odena et al, 2016)

SN-GAN: Shared Generator

Gray whale

Welsh springer spaniel

(Miyato et al, 2017)

Persian cat

From GAN to BigGAN

- Depth and Convolution
- Class-conditional Generation
- Wasserstein GAN
- Self Attention
- BigGAN

Wasserstein GAN

• Wasserstein Distance: Minimum cost of transporting mass in converting the data distribution q to the data distribution p.

GAN:

WGAN

Discriminator/CriticGeneratorGAN $\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right]$ $\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m -\log \left(D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right)$ WGAN $\nabla_w \frac{1}{m} \sum_{i=1}^m \left[f\left(\boldsymbol{x}^{(i)} \right) - f\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right]$ $\nabla_{\theta} \frac{1}{m} \sum_{i=1}^m -f\left(G\left(\boldsymbol{z}^{(i)} \right) \right)$

$$w \leftarrow w + \alpha \cdot \operatorname{RMSProp}(w, g_w)$$

 $w \leftarrow \operatorname{clip}(w, -c, c)$

From GAN to BigGAN

- Depth and Convolution
- Class-conditional Generation
- Wasserstein GAN
- Self Attention
- BigGAN

Self-Attention

Use layers from Wang et al 2018

From GAN to BigGAN

- Depth and Convolution
- Class-conditional Generation
- Wasserstein GAN
- Self Attention
- BigGAN

- Scalability: GANs benefit dramatically from scaling. Two architectural changes that improve scalability.
- Robustness: Fine control of the trade-offs between fidelity and variety is possible via the "truncation trick"
- Stability: Devises solutions that minimize the instabilities in Large Scale GANs

Figure 1: Class-conditional samples generated by our model.

Applying GANs

- Semi-supervised Learning
- Model-based optimization
- Extreme personalization
- Program synthesis

Image to Image Translation

Semantic label \rightarrow Image

 $Day \rightarrow Night$

Winter \rightarrow Summer

Artistic video gaming

Many other applications

 $Drawing \rightarrow Image$

	Supervised	Unsupervised
Unimodal	Pix2pix, CRN, SRGAN	DistanceGAN, CycleGAN, DiscoGAN, DualGAN, UNIT, DTN, StarGAN, OST
Multimodal	pix2pixHD, BicycleGAN	MUNIT, Augmented CycleGAN

Fully Supervised: pix2pix

Conditional GAN

$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).$$

[Isola et al., CVPR 2017]

[Isola et al., CVPR 2017]

Unsupervised: Circular GANs

DiscoGAN: "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks". Kim et al. ICML'17.

CycleGAN: "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks". Zhu et al. arXiv:1703.10593, 2017.

DualGAN: "Unsupervised Dual Learning for Image-to-Image Translation". Zili et al. arXiv:1704.02510, 2017.

Cycle-Consistent Adversarial Networks

[Zhu et al., ICCV 2017]

Cycle Consistency Loss

See similar formulations [Yi et al. 2017], [Kim et al. 2017]

[Zhu et al., ICCV 2017]

Collection Style Transfer

Monet

Photograph @ Alexei Efros

Ukiyo-e

Cezanne

DistanceGAN

- A pair of images of a given distance are mapped to a pair of outputs with a similar distance
- $|x_i x_j|_1$ and $|G(x_i) G(x_j)|_1$ are highly correlated.

$$|x_1 - x_2|_1 \sim |G(x_1) - G(x_2)|_1$$

Benaim et al., NIPS 2017

Motivating distance correlations

Analysis of CycleGAN's horse to zebra results

Benaim et al., NIPS 2017

Mode Collapse

Benaim et al., NIPS 2017

More than 2 domains

Choi et al., CVPR 2018

More than 2 domains

Choi et al., CVPR 2018

Modeling multiple possible outputs

Possible outputs

BiCycleGAN [Zhu et al., NIPS 2017] (c.f. InfoGAN [Chen et al. 2016])

MAD-GAN [Ghosh et al., CVPR 2018]

 S_2

 S_1

UNIT: unimodal

MUNIT: multimodal

Huang et al., ECCV 2018

Sketch to Image Translation

Huang et al., ECCV 2018

Animal Image Translation

Huang et al., ECCV 2018

Content Transfer?

Input Face Images

One Shot?

• Not only are we unsupervised, but we have only a single sample in the input domain!

Applications Beyond Computer Vision

- Many other Vision Applications: Photo Enhancement, Image Dehazing
- Medical Imaging and Biology [Wolterink et al., 2017]
- Voice conversion [Fang et al., 2018, Kaneko et al., 2017]
- Cryptography [CipherGAN: Gomez et al., ICLR 2018]
- Robotics
- NLP: Unsupervised machine translation.
- NLP: Text style transfer.

Thank You! Questions?