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Progress on Face Generation



BigGAN – Late 2018 
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Wasserstein GAN

• Wasserstein Distance: Minimum cost of transporting mass in converting the data 
distribution q to the data distribution p. 
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• Scalability: GANs benefit dramatically from scaling. Two architectural changes 
that improve scalability. 

• Robustness: Fine control of the trade-offs between fidelity and variety is 
possible via the “truncation trick”

• Stability: Devises solutions that minimize the instabilities in Large Scale GANs

BigGAN





Image to Image Translation
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Supervised Unsupervised

Unimodal Pix2pix, CRN, SRGAN DistanceGAN, CycleGAN, DiscoGAN, 
DualGAN, UNIT, DTN, StarGAN, OST

Multimodal pix2pixHD, BicycleGAN MUNIT, Augmented CycleGAN



……

Paired Unpaired



Fully Supervised: pix2pix

[Isola et al., CVPR 2017]



[Isola et al., CVPR 2017]



Unsupervised: Circular GANs
DiscoGAN: “Learning to Discover Cross-Domain Relations with 
Generative Adversarial Networks”. Kim et al. ICML’17. 

CycleGAN: “Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks”. Zhu et al. arXiv:1703.10593, 2017.

DualGAN: “ Unsupervised Dual Learning for Image-to-Image 
Translation”. Zili et al. arXiv:1704.02510, 2017.
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[Mark Twain, 1903]

[Zhu et al., ICCV 2017]

Cycle-Consistent Adversarial Networks



G(x) F(G x )x F(y) G(F x )𝑦

Cycle Consistency Loss

F G x − x
1

G F y − 𝑦
1

[Zhu et al., ICCV 2017]

DY(G x )

Reconstruction
error

Reconstruction
error

DG(F x )

See similar formulations [Yi et al. 2017], [Kim et al. 2017]



Collection Style Transfer

Photograph
@ Alexei Efros

Monet Van Gogh

Cezanne Ukiyo-e



1 1
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𝑥1 − 𝑥2 1~ 𝐺(𝑥1) − 𝐺(𝑥2) 1

• A pair of images of a given distance are mapped 
to a pair of outputs with a similar distance

• 𝑥𝑖 − 𝑥𝑗 1
and 𝐺 𝑥𝑖 − 𝐺 𝑥𝑗 1

are highly correlated.

Benaim et al., NIPS 2017

DistanceGAN



Motivating distance correlations
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Analysis of CycleGAN’s horse to zebra results
Benaim et al., NIPS 2017



Mode Collapse

• GAN:                                        Cycle: 

38Benaim et al., NIPS 2017



More than 2 domains

Choi et al., CVPR 2018



More than 2 domains

Choi et al., CVPR 2018







Huang et al., ECCV 2018
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Huang et al., ECCV 2018



Content Transfer?



One Shot?

• Not only are we unsupervised, but we have only a single sample in 
the input domain!

“One Shot Unsupervised Cross Domain Mapping”, Benaim, et al. In Submission





Applications Beyond Computer Vision

• Many other Vision Applications: Photo Enhancement, Image Dehazing

• Medical Imaging and Biology [Wolterink et al., 2017]

• Voice conversion [Fang et al., 2018, Kaneko et al., 2017]

• Cryptography [CipherGAN: Gomez et al., ICLR 2018]

• Robotics

• NLP: Unsupervised machine translation.

• NLP: Text style transfer.

• …



Thank You! Questions?
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