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Generative Modeling: Density

Estimation

Training Data

Density Function




Generative Modeling:

Sample Generation

Training Data | Sample Generator
(CelebA) (Karras et al, 2017)
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Self-Play

1959: Arthur Samuel’s checkers agent

40 days — AlphaGo Zero surpasses all
previous versions, becomes the best
Go player in the world

36 hours — AlphaGo Zero
reaches level of Alpha Go
Lee, which beat world
champion Lee Sedol in 2016

72 hours — AlphaGo Zero
beats Alpha Go Lee, 100:0

Training days
0 5 10 15 20 25 30 35 40
e AIphaGo Zero 40 blocks ~ s=«+ AlphaGolee ==+ AlphaGo Master

(Silver et al, 2017)

(OpenAl, 2017

"Sumo"

Goal: push opponent outside the ring, or topple them over

(Bansal et al, 2017)
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Progress on Face Generation

2014 2015 2016

(Brundage et al, 2018)



BigGAN — Late 2018




From GAN to BigGAN

Depth and Convolution
Class-conditional Generation
Wasserstein GAN

Self Attention

BigGAN



No Convolution Needed to Solve Simple Tasks

Original GAN, 2014



Depth and Convolution for Harder Tasks

Original GAN (CIFAR-10) DCGAN (ImageNet)

-

No convolution One convolutional layer = Many convolutional layers
(Radford et al, 2015)



From GAN to BigGAN

Depth and Convolution
Class-conditional Generation
Wasserstein GAN

Self Attention

BigGAN
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(Mirza and Osindero, 2014)




AC-GAN: Specialist Generators

monarch butterfly goldfinch i redshank

(Odena et al, 2016)




SN-GAN: Shared Generator

Grawhale - Welsh springer spaniel | Persnan cat

(Mlyato et al, 2017)



From GAN to BigGAN

Depth and Convolution
Class-conditional Generation
Wasserstein GAN

Self Attention

BigGAN



Wasserstein GAN

 Wasserstein Distance: Minimum cost of transporting mass in converting the data
distribution q to the data distribution p.
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GAN:
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WGAN
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Discriminator/Critic Generator
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From GAN to BigGAN

Depth and Convolution
Class-conditional Generation
Wasserstein GAN

Self Attention

BigGAN



Self-Attention

Use layers from
Wang et al 2018




From GAN to BigGAN

Depth and Convolution
Class-conditional Generation
Wasserstein GAN

Self Attention

BigGAN



BigGAN

e Scalability: GANs benefit dramatically from scaling. Two architectural changes
that improve scalability.

* Robustness: Fine control of the trade-offs between fidelity and variety is
possible via the “truncation trick”

e Stability: Devises solutions that minimize the instabilities in Large Scale GANs

Figure 1: Class-conditional samples generated by our model.



Applying GANs

Semi-supervised Learning
Model-based optimization
Extreme personalization

Program synthesis



Image to Image Translation
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Winter - Summer

Many other applications

Artistic video gaming Drawing = Image




-

Unimodal Pix2pix, CRN, SRGAN DistanceGAN, CycleGAN, DiscoGAN,
DualGAN, UNIT, DTN, StarGAN, OST

Multimodal pix2pixHD, BicycleGAN MUNIT, Augmented CycleGAN



Unpaired

—— N~




Fully Supervised: pix2pix

Conditional GAN

G* = argminmax L.qgan (G, D) + ALp1(G).
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[Isola et al., CVPR 2017]



Labels to Street Scene

Labels to Facade BW to Color

e
i I T Il

input output input output
Day to Night _ Edges to Photo

input output input output

[Isola et al., CVPR 2017]



Unsupervised: Circular GANs

DiscoGAN: “Learning to Discover Cross-Domain Relations with
Generative Adversarial Networks”. Kim et al. ICML'17.

CycleGAN: “Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks”. Zhu et al. arXiv:1703.10593, 2017.

DualGAN: “ Unsupervised Dual Learning for Image-to-Image
Translation”. Zili et al. arXiv:1704.02510, 2017.



Cycle-Consistent Adversarial Networks

[Mark Twain, 1903]

[Zhu et al., ICCV 2017]



Cycle Consistency Loss

_ Reconstruction

Recor;srtrrgjrction S\k /,X . error
[F(GG) ==, 1I6(F&) — ],

See similar formulations [Yiet al. 2017], [Kim et al. 2017] [Zhu et al., ICCV 2017]




Collection Style Transfer
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DistanceGAN

A pair of iImages of a given distance are mapped
to a pair of outputs with a similar distance

x; — ;| and |G (x;) — G(x;)|, are highly correlated.

R
1 Y1
X Yl | ~ x; — x| ~G(x1) — G(x2)|4
2\~ Y2
| G
Dy

Benaim et al., NIPS 2017



Motivating distance correlations

100

80 +

Distance: Translated zebra/horse images

40 60 80 100 - -
Distance: Source horse/zebra images

Analysis of CycleGAN’s horse to zebra results

Benaim et al., NIPS 2017



Mode Collapse

* GAN: G.\\ /G..m Cyde: — G,\ (;.//
® © ® ©

Benaim et al., NIPS 2017



More than 2 domains

Cross-domain models StarGAN

35

Choi et al., CVPR 2018



More than 2 domains

Choi et al., CVPR 2018



Modeling multiple possible outputs

Possible outputs



BiCycleGAN [Zhu et al., NIPS 2017]
(c.f. INfoGAN [Chen et al. 2016])

MAD-GAN [Ghosh et al., CVPR 2018]




UNIT: unimodal

MUNIT: multimodal B&™&8 [ N
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Huang et al., ECCV 2018



Sketch to Image Translation

Sample translations

Sample translations Input GT
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(a) edges <+ shoes (b) edges <> handbags

Huang et al., ECCV 2018



Animal Image Translation

Input Sample translations

Input '

(e) big cats — dogs | (f) dogs — blg cats

Huang et al., ECCV 2018



Content Transfer?

Input Face Images
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One Shot?

* Not only are we unsupervised, but we have only a single sample in
the input domain!

“One Shot Unsupervised Cross Domain Mapping”, Benaim, et al. In Submission



MapsTo ToFacades FacadesTo
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(Input)
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Applications Beyond Computer Vision

 Many other Vision Applications: Photo Enhancement, Image Dehazing
* Medical Imaging and Biology [Wolterink et al., 2017]

* Voice conversion [Fang et al., 2018, Kaneko et al., 2017]

* Cryptography [CipherGAN: Gomez et al., ICLR 2018]

* Robotics
* NLP: Unsupervised machine translation.

* NLP: Text style transfer.



Thank You! Questions?



